Python爬虫框架Scrapy实例
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python爬虫框架Scrapy实例相关的知识,希望对你有一定的参考价值。
目标任务:使用Scrapy框架爬取新浪网导航页所有大类、小类、小类里的子链接、以及子链接页面的新闻内容,最后保存到本地。
大类小类如下图所示:
点击国内这个小类,进入页面后效果如下图(部分截图):
查看页面元素,得到小类里的子链接如下图所示:
有子链接就可以发送请求来访问对应新闻的内容了。
首先创建scrapy项目
# 创建项目 scrapy startproject sinaNews # 创建爬虫 scrapy genspider sina "sina.com.cn"
一、根据要爬取的字段创建item文件:
# -*- coding: utf-8 -*- import scrapy import sys reload(sys) sys.setdefaultencoding("utf-8") class SinanewsItem(scrapy.Item): # 大类的标题和url parentTitle = scrapy.Field() parentUrls = scrapy.Field() # 小类的标题和子url subTitle = scrapy.Field() subUrls = scrapy.Field() # 小类目录存储路径 subFilename = scrapy.Field() # 小类下的子链接 sonUrls = scrapy.Field() # 文章标题和内容 head = scrapy.Field() content = scrapy.Field()
二、编写spiders爬虫文件
# -*- coding: utf-8 -*- import scrapy import os from sinaNews.items import SinanewsItem import sys reload(sys) sys.setdefaultencoding("utf-8") class SinaSpider(scrapy.Spider): name = "sina" allowed_domains = ["sina.com.cn"] start_urls = [‘http://news.sina.com.cn/guide/‘] def parse(self, response): items= [] # 所有大类的url 和 标题 parentUrls = response.xpath(‘//div[@id="tab01"]/div/h3/a/@href‘).extract() parentTitle = response.xpath(‘//div[@id="tab01"]/div/h3/a/text()‘).extract() # 所有小类的ur 和 标题 subUrls = response.xpath(‘//div[@id="tab01"]/div/ul/li/a/@href‘).extract() subTitle = response.xpath(‘//div[@id="tab01"]/div/ul/li/a/text()‘).extract() #爬取所有大类 for i in range(0, len(parentTitle)): # 指定大类目录的路径和目录名 parentFilename = "./Data/" + parentTitle[i] #如果目录不存在,则创建目录 if(not os.path.exists(parentFilename)): os.makedirs(parentFilename) # 爬取所有小类 for j in range(0, len(subUrls)): item = SinanewsItem() # 保存大类的title和urls item[‘parentTitle‘] = parentTitle[i] item[‘parentUrls‘] = parentUrls[i] # 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba) if_belong = subUrls[j].startswith(item[‘parentUrls‘]) # 如果属于本大类,将存储目录放在本大类目录下 if(if_belong): subFilename =parentFilename + ‘/‘+ subTitle[j] # 如果目录不存在,则创建目录 if(not os.path.exists(subFilename)): os.makedirs(subFilename) # 存储 小类url、title和filename字段数据 item[‘subUrls‘] = subUrls[j] item[‘subTitle‘] =subTitle[j] item[‘subFilename‘] = subFilename items.append(item) #发送每个小类url的Request请求,得到Response连同包含meta数据 一同交给回调函数 second_parse 方法处理 for item in items: yield scrapy.Request( url = item[‘subUrls‘], meta={‘meta_1‘: item}, callback=self.second_parse) #对于返回的小类的url,再进行递归请求 def second_parse(self, response): # 提取每次Response的meta数据 meta_1= response.meta[‘meta_1‘] # 取出小类里所有子链接 sonUrls = response.xpath(‘//a/@href‘).extract() items= [] for i in range(0, len(sonUrls)): # 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True if_belong = sonUrls[i].endswith(‘.shtml‘) and sonUrls[i].startswith(meta_1[‘parentUrls‘]) # 如果属于本大类,获取字段值放在同一个item下便于传输 if(if_belong): item = SinanewsItem() item[‘parentTitle‘] =meta_1[‘parentTitle‘] item[‘parentUrls‘] =meta_1[‘parentUrls‘] item[‘subUrls‘] = meta_1[‘subUrls‘] item[‘subTitle‘] = meta_1[‘subTitle‘] item[‘subFilename‘] = meta_1[‘subFilename‘] item[‘sonUrls‘] = sonUrls[i] items.append(item) #发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据 一同交给回调函数 detail_parse 方法处理 for item in items: yield scrapy.Request(url=item[‘sonUrls‘], meta={‘meta_2‘:item}, callback = self.detail_parse) # 数据解析方法,获取文章标题和内容 def detail_parse(self, response): item = response.meta[‘meta_2‘] content = "" head = response.xpath(‘//h1[@id="main_title"]/text()‘) content_list = response.xpath(‘//div[@id="artibody"]/p/text()‘).extract() # 将p标签里的文本内容合并到一起 for content_one in content_list: content += content_one item[‘head‘]= head item[‘content‘]= content yield item
三、编写pipelines文件
# -*- coding: utf-8 -*- from scrapy import signals import sys reload(sys) sys.setdefaultencoding("utf-8") class SinanewsPipeline(object): def process_item(self, item, spider): sonUrls = item[‘sonUrls‘] # 文件名为子链接url中间部分,并将 / 替换为 _,保存为 .txt格式 filename = sonUrls[7:-6].replace(‘/‘,‘_‘) filename += ".txt" fp = open(item[‘subFilename‘]+‘/‘+filename, ‘w‘) fp.write(item[‘content‘]) fp.close() return item
四、settings文件的设置
# 设置管道文件 ITEM_PIPELINES = { ‘sinaNews.pipelines.SinanewsPipeline‘: 300, }
执行命令
scrapy crwal sina
效果如下图所示:
打开工作目录下的Data目录,显示大类文件夹
大开一个大类文件夹,显示小类文件夹:
打开一个小类文件夹,显示文章:
以上是关于Python爬虫框架Scrapy实例的主要内容,如果未能解决你的问题,请参考以下文章
python网络爬虫实战-Scrapy,深入理解scrapy框架,解决数据抓取过程