python进行数据分析----线性回归

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python进行数据分析----线性回归相关的知识,希望对你有一定的参考价值。

 

线性回归分析:

方法:
    import statsmodels.api as sm
import pandas as pd
from patsy.highlevel  import dmatrices  ----2.7里面是 from patsy import dmatrices
hg =D:/hg.csv
df=pd.read_csv(hg)
vars=[rkzzl,zrs,rjgdp]
df=df[vars]
y,X=dmatrices( rkzzl ~ zrs + rjgdp ,data=df,return_type=dataframe)
mod=sm.OLS(y,X)
res=mod.fit()
print res.summary()

 

所有代码:

import statsmodels.api as sm
import pandas as pd
import numpy as np
from patsy.highlevel import dmatrices
from common.util.my_sqlalchemy import sqlalchemy_engine
import math
sql = "select Q1R3, Q1R5, Q1R6, Q1R7 from db2017091115412316222027656281_1;"
df = pd.read_sql(sql, sqlalchemy_engine)
df_dropna = df.dropna()
y,X=dmatrices( Q1R3 ~ Q1R5 + Q1R6 + Q1R7,data=df_dropna,return_type=dataframe)
mod=sm.OLS(y,X)
res=mod.fit()
result = res.summary()
print(result)
model = {
                n: int(res.nobs),
                df: res.df_model,
                r: math.sqrt(res.rsquared),
                r_squared:res.rsquared,
                r_squared_adj: res.rsquared_adj,
                f_statistic: res.fvalue,
                prob_f_statistic: res.f_pvalue,
              }
coefficient = {
         coefficient:list(res.params),
         std: list(np.diag(np.sqrt(res.cov_params()))),
         t: list(res.tvalues),
         sig: [i for i in map(lambda x:float(x),("".join("{:.4f},"*len(res.pvalues)).format(*list(res.pvalues))).rstrip(",").split(","))]
      }
returnValue = {model: model, coefficient: coefficient}
print(returnValue)

 

技术分享

 

{
    model: {
            df: 3.0, 
            n: 665, 
            prob_f_statistic: 1.185607423551511e-17, 
            r_squared_adj: 0.11247707470462853, 
            f_statistic: 29.049896130483212, 
            r_squared: 0.11648696743939679, 
            r: 0.3413018714267427}, 
    coefficient: {
            std: [0.30170364007280126, 0.049972399035516278, 0.051623405028706125, 0.047659986606566104], 
            sig: [0.0, 0.0, 0.0, 0.0312], 
            t: [5.4578212730306044, 5.3469744215460269, 4.3810228293129168, 2.1587543885465008], 
            coefficient: [1.6466445449401035, 0.26720113942619689, 0.22616331595762876, 0.10288620524499202]}
}

 

以上是关于python进行数据分析----线性回归的主要内容,如果未能解决你的问题,请参考以下文章

如何用Python进行线性回归以及误差分析

如何用Python进行线性回归以及误差分析

Python - 从线性回归线计算正在进行的 1 个标准偏差

机器学习之路:python线性回归分类器 进行良恶性肿瘤分类预测

python之简单线性回归分析

python中按日期的线性回归预测