深度学习之路三 训练椭圆函数
Posted Please Call me 小强
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习之路三 训练椭圆函数相关的知识,希望对你有一定的参考价值。
#coding:utf-8 from sklearn.neural_network import MLPRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import numpy as np def ellipse(x): y = np.sqrt(1 - x**2/4.0) return y data = np.linspace(-2, 2, 2000) labels = ellipse(data) X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.1) X_train=X_train.reshape(-1,1) X_test=X_test.reshape(-1,1) mlp = MLPRegressor(hidden_layer_sizes=(5, 5, 5), max_iter=1000, batch_size=1, activation=\'tanh\') mlp.fit(X_train, y_train) y_pred = mlp.predict(X_test) print(\'X_train.shape:\', X_train.shape) print(\'y_train.shape:\', y_train.shape) print(\'X_test.shape:\', X_test.shape) print(\'y_test.shape:\', y_test.shape) print(\'y_pred.shape:\', y_pred.shape) print("mlp train score:", mlp.score(X_train, y_train)) print("mlp test score:", mlp.score(X_test, y_test)) print("预测的损失值:", mean_squared_error(y_pred, y_test)) print(\'查看预测情况:\') for i in range(10): print(y_pred[i], y_test[i])
通过几次实验发现
初始化的权重对结果影响很大, batch_size并不总是越大越好
以上是关于深度学习之路三 训练椭圆函数的主要内容,如果未能解决你的问题,请参考以下文章