python自动化运维之多进程
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python自动化运维之多进程相关的知识,希望对你有一定的参考价值。
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
1、Process
创建进程的类:Process([group[,target[,name[,args[,kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。
属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。
1.1 创建函数并将其作为单个进程
import multiprocessing import time,os def worker(interval): n = 5 while n > 0: print("[%s] The time is %s" %(os.getpid(),time.ctime())) time.sleep(interval) n -= 1 if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.start() print("主进程PID:%s" %os.getpid()) print("p.pid:", p.pid) print("p.name:", p.name) print("p.is_alive:", p.is_alive())
执行结果:
主进程PID:17476 p.pid: 16476 p.name: Process-1 p.is_alive: True [16476] The time is Thu Aug 31 16:23:04 2017 [16476] The time is Thu Aug 31 16:23:08 2017 [16476] The time is Thu Aug 31 16:23:11 2017 [16476] The time is Thu Aug 31 16:23:14 2017 [16476] The time is Thu Aug 31 16:23:17 2017
1.2 创建函数并将其作为多个进程
import multiprocessing import time,os def worker_1(interval): print("[%s] worker_1" % os.getpid()) time.sleep(interval) print("[%s] end worker_1" % os.getpid()) def worker_2(interval): print("[%s] worker_2" % os.getpid()) time.sleep(interval) print("[%s] end worker_2" % os.getpid()) def worker_3(interval): print("[%s] worker_3" % os.getpid()) time.sleep(interval) print("[%s] end worker_3" % os.getpid()) if __name__ == "__main__": p1 = multiprocessing.Process(target = worker_1, args = (2,)) p2 = multiprocessing.Process(target = worker_2, args = (3,)) p3 = multiprocessing.Process(target = worker_3, args = (4,)) p1.start() p2.start() p3.start() print("The number of CPU is: %s" %(multiprocessing.cpu_count())) for p in multiprocessing.active_children(): print("child p.name:%s\tp.id:%s" %(p.name,p.pid)) print("END!!!!!!!!!!!!!!!!!")
执行结果:
The number of CPU is: 2 child p.name:Process-2 p.id:15948 child p.name:Process-3 p.id:11792 child p.name:Process-1 p.id:2648 END!!!!!!!!!!!!!!!!! [11792] worker_3 [2648] worker_1 [15948] worker_2 [2648] end worker_1 [15948] end worker_2 [11792] end worker_3
1.3:将进程定义为类
import multiprocessing import time,os class ClockProcess(multiprocessing.Process): def __init__(self, interval): multiprocessing.Process.__init__(self) self.interval = interval def run(self): n = 5 while n > 0: print("[%s] the time is %s" %(os.getpid(),time.ctime())) time.sleep(self.interval) n -= 1 if __name__ == ‘__main__‘: p = ClockProcess(3) p.start()
注:进程p调用start()时,自动调用run()
执行结果:
[2128] the time is Thu Aug 31 16:38:30 2017 [2128] the time is Thu Aug 31 16:38:33 2017 [2128] the time is Thu Aug 31 16:38:36 2017 [2128] the time is Thu Aug 31 16:38:39 2017 [2128] the time is Thu Aug 31 16:38:42 2017
1.4 daemon程序对比结果
(1)不加daemon属性
import multiprocessing import time,os def worker(interval): print("[%s] work start:%s " %(os.getpid(),time.ctime())) time.sleep(interval) print("[%s] work end:%s " % (os.getpid(), time.ctime())) if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.start() print("主进程PID:%s" %os.getpid())
执行结果:
主进程PID:7724
[3728] work start:Thu Aug 31 16:44:14 2017 [3728] work end:Thu Aug 31 16:44:17 2017
(2)加上daemon属性
import multiprocessing import time,os def worker(interval): print("[%s] work start:%s " %(os.getpid(),time.ctime())) time.sleep(interval) print("[%s] work end:%s " % (os.getpid(), time.ctime())) if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.daemon = True p.start() print("主进程PID:%s" %os.getpid())
执行结果:
主进程PID:13700
注意:因子进程设置了daemon属性(守护进程),主进程结束,它们就随着结束了。
(3)设置daemon执行完结束的方法
import multiprocessing import time,os def worker(interval): print("[%s] work start:%s " %(os.getpid(),time.ctime())) time.sleep(interval) print("[%s] work end:%s " % (os.getpid(), time.ctime())) if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.daemon = True p.start() p.join() print("主进程PID:%s" %os.getpid())
执行结果:
[9600] work start:Thu Aug 31 16:46:10 2017 [9600] work end:Thu Aug 31 16:46:13 2017 主进程PID:14184
注意:p.join()为主进程等待p进程结束后再往下执行,下面有详细说明
2、Lock
当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。
import multiprocessing import sys, os def worker_with(lock, f): with lock: with open(f, ‘a+‘) as fs: n = 10 while n > 1: fs.write("[%s] Lockd acquired via with\n" %os.getpid()) n -= 1 def worker_no_with(lock, f): lock.acquire() try: with open(f, ‘a+‘) as fs: n = 10 while n > 1: fs.write("[%s] Lock acquired directly\n" %os.getpid()) n -= 1 finally: lock.release() if __name__ == "__main__": lock = multiprocessing.Lock() f = "file.txt" w = multiprocessing.Process(target=worker_with, args=(lock, f)) nw = multiprocessing.Process(target=worker_no_with, args=(lock, f)) w.start() nw.start() print("主进程PID:%s" % os.getpid())
执行结果(输出文件)
[1872] Lockd acquired via with [1872] Lockd acquired via with [1872] Lockd acquired via with [1872] Lockd acquired via with [1872] Lockd acquired via with [1872] Lockd acquired via with [1872] Lockd acquired via with [1872] Lockd acquired via with [1872] Lockd acquired via with [1512] Lock acquired directly [1512] Lock acquired directly [1512] Lock acquired directly [1512] Lock acquired directly [1512] Lock acquired directly [1512] Lock acquired directly [1512] Lock acquired directly [1512] Lock acquired directly [1512] Lock acquired directly
3. Semaphore
Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。
import multiprocessing import time,os def worker(s, i): s.acquire() print("[%s]\t%s acquire" %(os.getpid(),multiprocessing.current_process().name)) time.sleep(i) print("[%s]\t%s release" %(os.getpid(),multiprocessing.current_process().name)) s.release() if __name__ == "__main__": s = multiprocessing.Semaphore(2) for i in range(5): p = multiprocessing.Process(target = worker, args=(s, i*2)) p.start() print("主进程PID:%s" % os.getpid())
执行结果:
主进程PID:11428 [12276] Process-2 acquire [6352] Process-4 acquire [12276] Process-2 release [3948] Process-3 acquire [6352] Process-4 release [9400] Process-5 acquire [3948] Process-3 release [1392] Process-1 acquire [1392] Process-1 release [9400] Process-5 release
4、Event
Event用来实现进程间同步通信。
import multiprocessing import time,os def wait_for_event(e): print("wait_for_event: starting") e.wait() print("wairt_for_event: e.is_set() -> %s" %str(e.is_set())) def wait_for_event_timeout(e, t): print("wait_for_event_timeout:starting") e.wait(t) print("wait_for_event_timeout:e.is_set -> %s" %str(e.is_set())) if __name__ == "__main__": e = multiprocessing.Event() w1 = multiprocessing.Process(name = "block", target = wait_for_event, args = (e,)) w2 = multiprocessing.Process(name = "non-block", target = wait_for_event_timeout, args = (e, 2)) w1.start() w2.start() time.sleep(3) e.set() print("主进程PID:%s" % os.getpid()) print("main: event is set")
执行结果:
wait_for_event: starting wait_for_event_timeout:starting wait_for_event_timeout:e.is_set -> False wairt_for_event: e.is_set() -> True 主进程PID:9444 main: event is set
5、Queue
Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:
import multiprocessing
def writer_proc(q): try: q.put(1, block = False) except: pass def reader_proc(q): try: print(q.get(block = False)) except: pass if __name__ == "__main__": q = multiprocessing.Queue() writer = multiprocessing.Process(target=writer_proc, args=(q,)) writer.start() reader = multiprocessing.Process(target=reader_proc, args=(q,)) reader.start() reader.join() writer.join()
执行结果:
1
6、Pipe
Pipe方法返回(conn1,conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。
send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。
import multiprocessing import time def proc1(pipe): while True: for i in range(10): print("send: %s" %(i)) pipe.send(i) time.sleep(1) def proc2(pipe): while True: print("proc2 rev:", pipe.recv()) time.sleep(1) def proc3(pipe): while True: print("PROC3 rev:", pipe.recv()) time.sleep(1) if __name__ == "__main__": pipe = multiprocessing.Pipe() p1 = multiprocessing.Process(target=proc1, args=(pipe[0],)) p2 = multiprocessing.Process(target=proc2, args=(pipe[1],)) p1.start() p2.start() p1.join() p2.join()
7、Pool
在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。
7.1 使用进程池(非阻塞)
import multiprocessing import time def func(msg): print("msg:", msg) time.sleep(3) print("end") if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in range(4): msg = "hello %d" %(i) pool.apply_async(func, (msg, )) # 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~") pool.close() pool.join() # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束 print("Sub-process(es) done.")
执行结果:
Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ msg: hello 0 msg: hello 1 msg: hello 2 end msg: hello 3 end end end Sub-process(es) done.
函数解释:
apply_async(func[,args[,kwds[,callback]]])它是非阻塞,apply(func[,args[,kwds]])是阻塞的(理解区别,看例1例2结果区别)
close()关闭pool,使其不在接受新的任务。
terminate()结束工作进程,不在处理未完成的任务。
join()主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。
执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。
7.2 使用进程池(阻塞)
import multiprocessing import time def func(msg): print("msg:", msg) time.sleep(3) print("end") if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in range(4): msg = "hello %d" %(i) pool.apply(func, (msg, )) # 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~") pool.close() pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束 print("Sub-process(es) done.")
执行结果:
msg: hello 0 end msg: hello 1 end msg: hello 2 end msg: hello 3 end Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ Sub-process(es) done.
7.3 使用进程池,并关注结果
import multiprocessing import time def func(msg): print("msg:", msg) time.sleep(3) print("end") return "done" + msg if __name__ == "__main__": pool = multiprocessing.Pool(processes=4) result = [] for i in range(3): msg = "hello %d" %(i) result.append(pool.apply_async(func, (msg, ))) pool.close() pool.join() for res in result: print(":::", res.get()) print("Sub-process(es) done.")
执行结果:
msg: hello 0 msg: hello 1 msg: hello 2 end end end ::: donehello 0 ::: donehello 1 ::: donehello 2 Sub-process(es) done.
7.4 使用多个进程池
import multiprocessing import os, time, random def Lee(): print "\nRun task Lee-%s" % (os.getpid()) # os.getpid()获取当前的进程的ID start = time.time() time.sleep(random.random() * 10) # random.random()随机生成0-1之间的小数 end = time.time() print(‘Task Lee, runs %0.2f seconds.‘ % (end - start)) def Marlon(): print("\nRun task Marlon-%s" % (os.getpid())) start = time.time() time.sleep(random.random() * 40) end = time.time() print(‘Task Marlon runs %0.2f seconds.‘ % (end - start)) def Allen(): print("\nRun task Allen-%s" % (os.getpid())) start = time.time() time.sleep(random.random() * 30) end = time.time() print(‘Task Allen runs %0.2f seconds.‘ % (end - start)) def Frank(): print("\nRun task Frank-%s" % (os.getpid())) start = time.time() time.sleep(random.random() * 20) end = time.time() print(‘Task Frank runs %0.2f seconds.‘ % (end - start)) if __name__ == ‘__main__‘: function_list = [Lee, Marlon, Allen, Frank] print("parent process %s" % (os.getpid())) pool = multiprocessing.Pool(4) for func in function_list: pool.apply_async(func) # Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中 print(‘Waiting for all subprocesses done...‘) pool.close() pool.join() # 调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束 print(‘All subprocesses done.‘)
执行结果:
parent process 10992 Waiting for all subprocesses done... Run task Marlon-12828 Run task Allen-12880 Run task Frank-784 Task Lee, runs 7.22 seconds. Task Frank runs 11.81 seconds. Task Marlon runs 14.34 seconds. Task Allen runs 21.21 seconds. All subprocesses done.
本文出自 “炫维” 博客,转载请与作者联系!
以上是关于python自动化运维之多进程的主要内容,如果未能解决你的问题,请参考以下文章