R-统计分析的一些R包和函数
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R-统计分析的一些R包和函数相关的知识,希望对你有一定的参考价值。
参考技术A 横截面数据回归经典方法quantreg 分位数回归
MASS BOX-COX变换
survival 生存函数、COX比例危险回归模型
mfp COX比例危险回归模型多重分数多项式
car 可以检查vif
ridge 岭回归
lars lasso回归
msgps adaptive lasso
pls 偏最小二乘
横截面数据 回归机器学习 方法
rpart.plot 画回归树
mboost boosting回归
ipred bagging回归
randomForest 随机森林回归
e1071 or kernlab SVR支持向量机回归
nnet+caret or neuralnet 神经网络
横截面数据 分类 经典方法
glm( ) 广义线性模型
MASS 的 lda( ) or mda 的 mda( ) or fda 的 fda( ) 线性判别
横截面数据 分类机器学习 方法
rpart.plot 画分类树
adabag adaboost分类、bagging分类
randomForest 随机森林分类
e1071 or kernlab SVR支持向量机分类
kknn 最近邻分类
nnet 神经网络分类
横截面数据 计数或有序因变量
Possion 散布问题(方差不等于均值):
dglm 双广义线性模型(Tweedie分布)
MASS 的 glm.nb( ) (负二项分布)
pscl 的 zeroinfl( ) 零膨胀计数数据模型
rminer 支持向量机
mlogit 多项logit模型
MASS 的 loglm( ) or nnet 的 multinom( ) 多项分布对数线性模型
MASS 的 polr( ) or VGAM 的 vglm( ) 多项分布对数线性模型
纵向数据:多水平模型、面板数据
lme4 的 lmer( ) or nlme 的 lme( ) 线性随机效应混合模型
REEMtree 拟合固定效应部分的决策树
coxme cox随机效应分析
JM 联合模型
plm 拟合面板数据
多元分析
factanal( ) 因子分析
cluster 分层聚类
ICGE INCA指数
ggmap 画地图
NbClust 一系列聚类方法
CCA 典型相关分析
MASS 对应分析
以下为非经典多元数据分析
FactoMineR 主成分分析、对应分析(补充元素作为测试集);多重对应分析(可以包含数量变量和分类变量)、多重因子分析、分层多重因子分析、基于主成分分析的分层聚类
多元数据的关联规则分析
arules 关联规则分析
路径建模数据的PLS分析
plspm 的函数 plspm( ) 偏最小二乘
lavvan 加协方差关系
以上是关于R-统计分析的一些R包和函数的主要内容,如果未能解决你的问题,请参考以下文章