(数据科学学习手札150)基于dask对geopandas进行并行加速

Posted 费弗里

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了(数据科学学习手札150)基于dask对geopandas进行并行加速相关的知识,希望对你有一定的参考价值。

本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes

1 简介

  大家好我是费老师,geopandas作为我们非常熟悉的Python GIS利器,兼顾着高性能和易用性,特别是在其0.12.0版本开始使用全新的shapely2.0矢量计算后端后,性能表现更是一路狂飙。

  而我们作为使用者,当然是希望geopandas处理分析矢量数据越快越好。在今天的文章中,我将为大家简要介绍如何基于daskgeopandas进一步提速,从而更从容的应对更大规模的GIS分析计算任务。

2 dask-geopandas的使用

  很多朋友应该听说过dask,它是Python生态里非常知名的高性能计算框架,可以针对大型数组、数据框及机器学习模型进行并行计算调度优化,而dask-geopandas就是由geopandas团队研发的,基于daskGeoDataFrame进行并行计算优化的框架,本质上是对daskgeopandas的封装整合。

  dask-geopandas的安装非常简单,在已经安装了geopandas的虚拟环境中,执行下列命令即可:

conda install dask-geopandas -c conda-forge -y

2.1 基础使用

  dask-geopandasgeopandas的常用计算API是相通的,但调用方式略有不同,举一个实际例子,其中示例文件demo_points.gdb由以下代码随机生成并写出:

import numpy as np
import geopandas as gpd
from shapely import Point, Polygon

# 生成示例用矢量数据
demo_points = gpd.GeoDataFrame(
    
        \'id\': range(1000000),
        \'geometry\': [
            Point(np.random.uniform(0, 90),
                  np.random.uniform(0, 90))
            for i in range(1000000)
        ]
    
)

# 写出到本地gdb
demo_points.to_file(\'./demo_points.gdb\', driver=\'OpenFileGDB\')

  在使用dask-geopandas时,我们首先还是需要用geopandas进行目标数据的读入,再使用from_geopandas()将其转换为dask-geopandas中可以直接操作的数据框对象,其中参数npartitions用于将原始数据集划分为n个数据块,理论上分区越多并行运算速度越快,但受限于机器的CPU瓶颈,通常建议设置npartitions为机器可调度的CPU核心数:

demo_points = gpd.read_file(\'./demo_points.gdb\', driver=\'OpenFileGDB\')
demo_points_ddf = dgpd.from_geopandas(demo_points, npartitions=4)
demo_points_ddf

  在此基础上,后续执行各种运算都需要在代码末尾衔接.compute(),从而真正执行前面编排好的运算逻辑,以非矢量和矢量运算分别为例:

2.2 性能比较

  既然使用了dask-geopandas就是奔着其针对大型数据集的计算优化而去的,我们来比较一下其与原生geopandas在常见GIS计算任务下的性能表现,可以看到,在与geopandas的计算比较中,dask-geopandas取得了约3倍的计算性能提升,且这种提升幅度会随着数据集规模的增加而愈发明显,因为dask可以很好的处理内存紧张时的计算优化:

  当然,这并不代表我们可以在任何场景下用dask-geopandas代替geopandas,在常规的中小型数据集上dask-geopandas反而要慢一些,因为徒增了额外的分块调度消耗。

  除了上述的内容外,dask-geopandas还有一些实验性质的功能,如基于地理空间分布的spatial_partitions数据分块策略优化等,待它们稳定之后我会另外发文为大家介绍

以上是关于(数据科学学习手札150)基于dask对geopandas进行并行加速的主要内容,如果未能解决你的问题,请参考以下文章

(数据科学学习手札83)基于geopandas的空间数据分析——geoplot篇(下)

(数据科学学习手札83)基于geopandas的空间数据分析——geoplot篇(下)

(数据科学学习手札44)在Keras中训练多层感知机

(数据科学学习手札88)基于geopandas的空间数据分析——空间计算篇(下)

(数据科学学习手札47)基于Python的网络数据采集实战

(数据科学学习手札19)R中基本统计分析技巧总结