使用python做量化交易策略测试和回验,都有哪些比较成熟一些的库

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用python做量化交易策略测试和回验,都有哪些比较成熟一些的库相关的知识,希望对你有一定的参考价值。

比较成熟的库可以参考如下几个:
pybacktest
pyalgotrader
zipline
bt
backtrader

pybacktest基于vector,不是event based,快得多得多,缺点也明显。
参考技术A pybacktest
pyalgotrader
zipline
bt
backtrader

pybacktest基于vector,不是event based,快得多得多,缺点也明显。
参考技术B numpy
介绍:一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。
scipy
介绍:SciPy是一款方便、易于使用、专为科学和工程设计的Python工具包。它包括统计、优化、线性代数、傅里叶变换、信号和图像处理、常微分方程求解等等。
pandas
介绍:Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
quantdsl
介绍: quantdsl包是Quant DSL语法在Python中的一个实现。Quant DSL 是财务定量分析领域专用语言,也是对衍生工具进行建模的功能编程语言。Quant DSL封装了金融和交易中使用的模型(比如市场动态模型、最小二乘法、蒙特卡罗方法、货币的时间价值)。
statistics
介绍:python内建的统计库,该库提供用于计算数值数据的数学统计的功能。
PyQL
介绍: PyQL构建在Cython之上,并在QuantLib之上创建一个很浅的Pythonic层,是对QuantLib的一个包装,并利用Cython更好的性能。

以上是关于使用python做量化交易策略测试和回验,都有哪些比较成熟一些的库的主要内容,如果未能解决你的问题,请参考以下文章

用Python编程借助现有量化平台编写股票交易策略和回测分析

自己做量化交易软件(45)小白量化实战18--直接使用通达信自编指标公式进行分析绘图和回测

自己做量化交易软件(45)小白量化实战18--直接使用通达信自编指标公式进行分析绘图和回测

自己做量化交易软件(45)小白量化实战18--直接使用通达信自编指标公式进行分析绘图和回测

中国的 Python 量化交易工具链都有哪些

量化投资