软件开发培训哪里好?广州有木有好的学校呢?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了软件开发培训哪里好?广州有木有好的学校呢?相关的知识,希望对你有一定的参考价值。

广州软件开发最好的学校是中山大学软件人才培训中心,广州中山大学软件人才培训中心集结优秀师资、结合当代IT企业信息技术应用发展现状与趋势、覆盖软件开发岗位所需知识点和技能倾力打造。该新版课程不但在知识点上进行持续优化,而且将培训的侧重点提升至对学生编程思维的训练,授课除了示范性演示技术外更要求力透纸背地讲解技术背景和工作原理。真正使受训学员领悟编程之道,脱离一般培训“依葫芦画瓢”的形而上学模式,从而达到更佳的教学效果,使我中心教学质量持续领先于同行。主要特点有: 1、技术新:针对日新月异的软件开发行业,该套课程紧扣企业,所选取的技术都是目前最具代表性的新技术。 2、技术全:课程内容上几乎覆盖了从事Java企业应用领域软件开发的所有必要技术。 3、技术深:本课程由浅入深,着力培养入门级开发人员,目标是软件高级研发人员。如:多线程socket通信服务器、自定义web-MVC框架让你自己开发一个Struts、CMS内容管理技术、数据仓库与BI决策分析等在本课程内都有详细讲解。 4、项目实战强:软件开发是一个实践性行业,必须具备很好的实际动手能力才可以获得更好的发展。本课程体系设置的所有项目都是从技术覆盖程度、可用性、深度几个角度考虑,实战训练贯穿整个软件项目训练始终。 5、技术跨平台: 新增选修课目动态满足每个学员就业时的需求,如:Spring-MVC、Lucenc搜索引擎、JSF2+ iBATIS、flex编程ml5/Ext-js、EJB3.0、jbpm工作流引擎、drools规则引擎、微软asp.net平台开发等,课程优势领跑软件开发培训业。

求采纳
参考技术A 学电脑不如学【视频剪辑】,理由很简单,容易学(不像其它行业学习成本高,难度大),适合短期3-4个月短期学习,而且行业缺口非常大,无论是找工作还是自己在家里接私单,月收入轻松过万,两三万也是稀松平常。【点击进入】免费“短视频剪辑后期”学习网址:
www.huixueba.net/web/AppWebClient/AllCourseAndResourcePage?type=1&tagid=313&zdhhr-11y17r-2138334391901790908

因为现在【短视频】的崛起,任何企业,任何工作室或者个人都需要制作剪辑大量的短视频来包装品牌,发抖音,发朋友圈,发淘宝等自媒体渠道做展示。因为每天都要更新并发布新内容,所以剪辑师根本招不够,,供需失衡就造成了剪辑师高薪水。

而且剪辑这个技术并不需要高超的电脑技术,也不需要美术音乐造诣,基本都是固定套路,要什么风格的片要什么节奏,经过三四个月的培训都可以轻松掌握。但凡有点电脑基础会用鼠标拖拽,会点击图标,会保存除非自己不想学,没有学不会的。但是要学好学精,就一定要找专业负责的培训机构了,推荐这个领域的老大:王氏教育。

在“短视频剪辑/短视频运营/视频特效”处理这块,【王氏教育】是国内的老大,每个城市都是总部直营校区。跟很多其它同类型大机构不一样的是:王氏教育每个校区都是实体面授,老师是手把手教,而且有专门的班主任从早盯到晚,爆肝式的学习模式,提升会很快,特别适合0基础的学生。王氏教育全国直营校区面授课程试听【复制后面链接在浏览器也可打开】: www.huixueba.com.cn/school/yingshi?type=2&zdhhr-11y17r-2138334391901790908


大家可以先把【绘学霸】APP下载到自己手机,方便碎片时间学习——绘学霸APP下载: www.huixueba.com.cn/Scripts/download.html
参考技术B 在选择大学的专业时,有越来越多的学生会考虑计算机和软件工程专业,大家都知道未来肯定是互联网占据社会的主流,引领发展,所以也有更多的人想从事软件开发的相关工作,java编程是最火热的技术之一,java培训班是不少人学习的途径,我自己是参加了java培训班的,在北京动 力节 点的培训班,选择这家培训机构的原因之一就是口碑好规模大,建议无论是学软件开发的哪种技术,都要找成立时间久和口碑名号好的培训机构来学习,这种机构一般来说都是比较靠谱的,培训的质量也都不错。 参考技术C 由于培训机构太多,想学的人很难选择。因此,可以按照以下方法进行判断:
1、培训学校的行业背景,也就是企业实力。
2、老师要有丰富的教学经验。除了技能之外,工作场所的必备素质如工作流程、行业规则也要同时学习。
3、课程,理论结合实战。公司不欢迎只会纸上谈兵的人,一定要多练习。
4、是否有免费的试学时间 。
5、就业是否有保障 。
6、培训课程是否符合市场需求。
蜗牛学苑,开设有Java全栈、Python测试开发,Web前端,UI设计,网络安全,提供免费试读一周,合同制保障就业,没就业退全款,不满意随时退,承诺最低转正后就业薪资。
无论是从课程内容,还是教学方式,就业保障等,我们都希望能够给学员足够好的教学,最诚信优质的服务。
最好直接去现场试听对比。看你比较在意的是哪方面,课程质量,老师的态度,或是学习环境,学费、就业保障等条件,去现场感受后,自然心里就有了答案。
参考技术D 需要实地考察,选择适合你的学习方式; 环境

大数据培训学校学哪些内容

首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。


大数据


大数据


Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。


Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。


Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。


Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。


Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。


Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。


Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。


Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。


Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。


Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。


Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

参考技术A 以下介绍的课程主要针对零基础大数据工程师每个阶段进行通俗易懂简易介绍,方面大家更好的了解大数据学习课程。课程框架是科多大数据的零基础大数据工程师课程。
一、 第一阶段:静态网页基础(HTML+CSS)
1. 难易程度:一颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:html常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等
4. 描述如下:
从技术层面来说,该阶段使用的技术代码很简单、易于学习、方便理解。从后期课程层来说,因为我们重点是大数据,但前期需要锻炼编程技术与思维。经过我们多年开发和授课的项目经理分析,满足这两点,目前市场上最好理解和掌握的技术是J2EE,但J2EE又离不开页面技术。所以第一阶段我们的重点是页面技术。采用市场上主流的HTMl+CSS。
二、 第二阶段:JavaSE+JavaWeb
1. 难易程度:两颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、集合、文件、IO、MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)JDBC、线程、反射、Socket编程、枚举、泛型、设计模式
4. 描述如下:
称为Java基础,由浅入深的技术点、真实商业项目模块分析、多种存储方式的设计
与实现。该阶段是前四个阶段最最重要的阶段,因为后面所有阶段的都要基于此阶段,也是学习大数据紧密度最高的阶段。本阶段将第一次接触团队开发、产出具有前后台(第一阶段技术+第二阶段的技术综合应用)的真实项目。
三、 第三阶段:前端框架
1. 难易程序:两星
2. 课时量(技术知识点+阶段项目任务+综合能力):64课时
3. 主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui
4. 描述如下:
前两个阶段的基础上化静为动,可以实现让我们网页内容更加的丰富,当然如果从市场人员层面来说,有专业的前端设计人员,我们设计本阶段的目标在于前端的技术可以更直观的锻炼人的思维和设计能力。同时我们也将第二阶段的高级特性融入到本阶段。使学习者更上一层楼。
四、 第四阶段:企业级开发框架
1. 难易程序:三颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webServiceCXF、Tomcat集群和热备、MySQL读写分离
4. 描述如下:
如果将整个JAVA课程比作一个糕点店,那前面三个阶段可以做出一个武大郎烧饼(因为是纯手工-太麻烦),而学习框架是可以开一个星巴克(高科技设备-省时省力)。从J2EE开发工程师的任职要求来说,该阶段所用到的技术是必须掌握,而我们所授的课程是高于市场(市场上主流三大框架,我们进行七大框架技术传授)、而且有真实的商业项目驱动。需求文档、概要设计、详细设计、源码测试、部署、安装手册等都会进行讲解。
五、 第五阶段: 初识大数据
1. 难易程度:三颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapReduce应用(中间计算过程、Java操作MapReduce、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)
4. 描述如下:
该阶段设计是为了让新人能够对大数据有一个相对的大概念怎么相对呢?在前置课程JAVA的学习过后能够理解程序在单机的电脑上是如何运行的。现在,大数据呢?大数据是将程序运行在大规模机器的集群中处理。大数据当然是要处理数据,所以同样,数据的存储从单机存储变为多机器大规模的集群存储。
(你问我什么是集群?好,我有一大锅饭,我一个人可以吃完,但是要很久,现在我叫大家一起吃。一个人的时候叫人,人多了呢? 是不是叫人群啊!)
那么大数据可以初略的分为: 大数据存储和大数据处理所以在这个阶段中呢,我们课程设计了大数据的标准:HADOOP大数据的运行呢并不是在咋们经常使用的WINDOWS 7或者W10上面,而是现在使用最广泛的系统:LINUX。
六、 第六阶段:大数据数据库
1. 难易程度:四颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)
4. 描述如下:
该阶段设计是为了让大家在理解大数据如何处理大规模的数据的同时。简化咋们的编写程序时间,同时提高读取速度。
怎么简化呢?在第一阶段中,如果需要进行复杂的业务关联与数据挖掘,自行编写MR程序是非常繁杂的。所以在这一阶段中我们引入了HIVE,大数据中的数据仓库。这里有一个关键字,数据仓库。我知道你要问我,所以我先说,数据仓库呢用来做数据挖掘分析的,通常是一个超大的数据中心,存储这些数据的呢,一般为ORACLE,DB2,等大型数据库,这些数据库通常用作实时的在线业务。
总之,要基于数据仓库分析数据呢速度是相对较慢的。但是方便在于只要熟悉SQL,学习起来相对简单,而HIVE呢就是这样一种工具,基于大数据的SQL查询工具,这一阶段呢还包括HBASE,它为大数据里面的数据库。纳闷了,不是学了一种叫做HIVE的数据“仓库”了么?HIVE是基于MR的所以查询起来相当慢,HBASE呢基于大数据可以做到实时的数据查询。一个主分析,另一个主查询
七、 第七阶段:实时数据采集
1. 难易程序:四颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化
4. 描述如下:
前面的阶段数据来源是基于已经存在的大规模数据集来做的,数据处理与分析过后的结果是存在一定延时的,通常处理的数据为前一天的数据。
举例场景:网站防盗链,客户账户异常,实时征信,遇到这些场景基于前一天的数据分析出来过后呢?是否太晚了。所以在本阶段中我们引入了实时的数据采集与分析。主要包括了:FLUME实时数据采集,采集的来源支持非常广泛,KAFKA数据数据接收与发送,STORM实时数据处理,数据处理秒级别
八、 第八阶段:SPARK数据分析
1. 难易程序:五颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性
4. 描述如下:
同样先说前面的阶段,主要是第一阶段。HADOOP呢在分析速度上基于MR的大规模数据集相对来说还是挺慢的,包括机器学习,人工智能等。而且不适合做迭代计算。SPARK呢在分析上是作为MR的替代产品,怎么替代呢? 先说他们的运行机制,HADOOP基于磁盘存储分析,而SPARK基于内存分析。我这么说你可能不懂,再形象一点,就像你要坐火车从北京到上海,MR就是绿皮火车,而SPARK是高铁或者磁悬浮。而SPARK呢是基于SCALA语言开发的,当然对SCALA支持最好,所以课程中先学习SCALA开发语言。
在科多大数据课程的设计方面,市面上的职位要求技术,基本全覆盖。而且并不是单纯的为了覆盖职位要求,而是本身课程从前到后就是一个完整的大数据项目流程,一环扣一环。
比如从历史数据的存储,分析(HADOOP,HIVE,HBASE),到实时的数据存储(FLUME,KAFKA),分析(STORM,SPARK),这些在真实的项目中都是相互依赖存在的。
参考技术B

JavaSE基础核心

Java入门语法、面向对象核心、集合与泛型、线程机制、网络编程、流程控制结构、异常体系、反射体系、IO流、设计模式

数据库关键技术

MySql安装和使用、DML(数据操纵语言)、DCL(数据控制语言)、存储过程和函数、JDBC核心技术、SQL语言解析、DDL(数据定义语言)

大数据基础核心

Maven、Hadoop、Hive、Kafka、Linux、Shell、Zookeeper+HA、Flume、HBase

Spark生态体系框架

Scala语言、Spark SQL、Kylin、Druid、Sqoop、Spark Core、Presto、Spark Streaming、Redis缓存数据库、GIT & GIT Hub、ElasticSearch

参考技术C

    第一阶段
    Java语言基础阶段

    第二阶段
    Linux系统&Hadoop生态体系

    第三阶段
    分布式计算框架

    第四阶段
    大数据实战项目

    第五阶段
    大数据分析

每月小更新 季度大升级 V5.0课程紧贴企业需求

参考技术D 学习大数据从入门到精通一般需要五个月的时间,千锋的基础班内容是JAVA开发。本回答被提问者采纳

以上是关于软件开发培训哪里好?广州有木有好的学校呢?的主要内容,如果未能解决你的问题,请参考以下文章

web前端开发培训去哪好?

Java培训机构哪家好?

深圳ui设计培训哪个好

Python培训哪里最好?

上海Unity3D游戏开发培训机构哪家好

大数据培训学校学哪些内容