SPSS中pearson(皮尔逊相关系数)看r值还是P值,确定相关性
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SPSS中pearson(皮尔逊相关系数)看r值还是P值,确定相关性相关的知识,希望对你有一定的参考价值。
正值表示两变量正相关,即一个随另一个的增大而增大,减小而减小,变化趋势相同;负值表示两变量负相关,即一个随另一个的增大而减小,变化趋势相反。
P>0.05表明没有相关性,P<0.05才有相关性。在有相关性的情况下,再看是否为正负相关,若为负相关,表明一个变量随另一个变量的增大而减小。
SPSS中pearson(皮尔逊相关系数)r值和P值,两个值都要看,r值表示在样本中变量间的相关系数,表示相关性的大小;p值是检验值,是检验两变量在样本来自的总体中是否存在和样本一样的相关性。
相关系数r的绝对值
皮尔逊相关系数的变化范围为-1到1。 系数的值为1意味着X和Y可以很好的由直线方程来描述,所有的数据点都很好的落在一条直线上,且随着增加而增加。系数的值为1意味着所有的数据点都落在直线上,且随着增加而减少。
系数的值为0意味着两个变量之间没有线性关系。更一般的,当且仅当均落在他们各自的均值的同一侧, 则的值为正。 也就是说,如果同时趋向于大于,或同时趋向于小于他们各自的均值,则相关系数为正。 如果趋向于落在他们均值的相反一侧,则相关系数为负。
参考技术A 两个值都要看,r值表示在样本中变量间的相关系数,表示相关性的大小;p值是检验值,是检验两变量在样本来自的总体中是否存在和样本一样的相关性。本回答被提问者采纳皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)
Pearson‘s r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度。
用于总体(population)时记作ρ (rho)(population correlation coefficient):
给定两个随机变量X,Y,ρ的公式为:
其中: 是协方差
是X的标准差
是Y的标准差
用于样本(sample)时记作r(sample correlation coefficient):
给定两个随机变量x,y,r的公式为:
其中: 是样本数量
是变量x,y对应的i点观测值
是x样本平均数,是y样本平均数
r的取值在-1与1之间。取值为1时,表示两个随机变量之间呈完全正相关关系;取值为-1时,表示两个随机变量之间呈完全负相关关系;取值为0时,表示两个随机变量之间线性无关。
(注:我们用样本相关系数r作为总体相关系数ρ的估计值,要判断r值是不是由抽样误差或偶然因素导致的,需要进行假设检验。)
那么皮尔逊相关系数是怎么得来的呢?(参考:https://blog.csdn.net/ichuzhen/article/details/79535226)
要理解皮尔逊相关系数,首先要理解协方差(Covariance)
。协方差可以反映两个随机变量之间的关系,如果一个变量跟随着另一个变量一起变大或者变小,那么这两个变量的协方差就是正值,就表示这两个变量之间呈正相关关系,反之相反。协方差的公式如下:
如果协方差的值是个很大的正数,我们可以得到两个可能的结论:
(1) 两个变量之间呈很强的正相关性
(2) 两个变量之间并没有很强的正相关性,协方差的值很大是因为X或Y的标准差很大
那么到底哪个结论正确呢?只要把X和Y变量的标准差,从协方差中剔除不就知道了吗?协方差能告诉我们两个随机变量之间的关系,但是却没法衡量变量之间相关性的强弱。因此,为了更好地度量两个随机变量之间的相关程度,引入了皮尔逊相关系数。可以看到,皮尔逊相关系数就是用协方差除以两个变量的标准差得到的。
以上是关于SPSS中pearson(皮尔逊相关系数)看r值还是P值,确定相关性的主要内容,如果未能解决你的问题,请参考以下文章
请问spss在pearson相关性分析中r值的负值与正值代表啥意思?