究竟啥是时间复杂度,怎么求时间复杂度,看这一篇就够了
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了究竟啥是时间复杂度,怎么求时间复杂度,看这一篇就够了相关的知识,希望对你有一定的参考价值。
参考技术A时间复杂度就是用来方便开发者估算出程序的运行时间
我们该如何估计程序运行时间呢,我们通常会估计算法的操作单元数量,来代表程序消耗的时间, 这里我们默认CPU的每个单元运行消耗的时间都是相同的。
假设算法的问题规模为n,那么操作单元数量便用函数f(n)来表示
随着数据规模n的增大,算法执行时间的增长率和f(n)的增长率相同,这称作为算法的渐近时间复杂度,简称时间复杂度,记为 O(f(n))
这里就要说一下这个大O,什么是大O呢,很多同学说时间复杂度的时候都知道O(n),O(n^2),但说不清什么是大O
算法导论给出的解释: 大O用来表示上界的 ,当用它作为算法的最坏情况运行时间的上界,就是对任意数据输入的运行时间的上界。
同样算法导论给出了例子:拿插入排序来说,插入排序的时间复杂度我们都说是O(n^2)
但是在数据本来有序的情况下时间复杂度是O(n),也就对于所有输入情况来说,最坏是O(n^2) 的时间复杂度,所以称插入排序的时间复杂度为O(n^2)
同样的同理我们在看一下快速排序,都知道快速排序是O(nlogn),但是当数据已经有序情况下,快速排序的时间复杂度是O(n^2) 的,严格从大O的定义来讲,快速排序的时间复杂度应该是O(n^2)
但是我们依然说快速排序是O(nlogn)的时间复杂度,这个就是业内的一个默认规定,我们这里说的O 代表的就是一般情况,不是严格的上界
所以这里大家知道这么一回事就好了
面试中面试官绝对不会针对快速排序的时间复杂度问题来讨论O的定义, 大家知道讨论的时间复杂度就是指一般情况下的时间复杂度就好了。
大家要对算法的时间复杂度有这样的一个概念
就是同一个算法的时间复杂度不是一成不变的,和输入的数据形式依然有关系
我们主要关心的还是一般情况下的数据形式 。
面试中说道算法的时间复杂度是多少指的都是一般情况
但是如果面试官和我们深入探讨一个算法的实现以及性能的时候 我们就要时刻想着 数据用例的不一样 时间复杂度也是不同的,这一点同学们要注意
这个图中我们可以看出 不同算法的时间复杂度 在不同数据输入规模下的差异 。
我们在决定使用那些算法的时候 ,不是时间复杂越低的越好,要考虑数据规模,如果数据规模很小 甚至可以用O(n^2)的算法比 O(n)的更合适
就像上图中图中 O(5n^2) 和 O(100n) 在n为20之前 很明显 O(5n^2)是更优的,所花费的时间也是最少的。
那我们为什么在计算时间复杂度的时候要忽略常数项系数呢,也就说O(100n) 就是O(n)的时间复杂度,O(5n^2) 就是O(n^2)的时间复杂度
而且要默认O(n) 优于O(n^2) 呢 ?
这里就又涉及到大O的定义
因为 大O其实就是数据量级突破一个点且数据量级非常大的情况下所表现出的时间复杂度 ,这个点也就是 常数项系数已经不起决定性作用的点。
例如上图中 20 就是那个点 ,n只要大于20 常数项系数已经不起决定性作用了。
所以我们说的时间复杂度都是省略常数项系数的,是因为一般情况下我们都是默认数据规模足够的大,基于这样的事实 我们给出的算法时间复杂的的一个排行如下所示:
O(1)常数阶 < O(logn)对数阶 < O(n)线性阶 < O(n^2)平方阶 < O(n^3)(立方阶) < O(2^n) (指数阶)
我们平时说这个 算法的时间复杂度是logn的,一定是log 以2为底n的对数么?
其实不然,也可以是以10为底n的对数,也可以是以20为底n的对数,但我们统一说 logn,也就是忽略底数的描述。
为什么可以这么做呢?
如下图所示
假如我们有两个算法的时间复杂度 分别是log以2为底n的对数 和 log 以10为底n的对数
那么这里如果大家还记得我们高中数学的话, 应该不能理解 以2为底n的对数 = 以2为底10的对数 乘以 以10为底n的对数
那这里以2为底10的对数 是一个常数,而我在上面已经讲述了我们计算时间复杂度是忽略常数项系数的
抽象一下 log 以i为底n的对数 等于 log 以j为底n的对数,所以我们忽略了i,直接说是logn,正式因为logij 是就一个常数
所以,这样就应该不难理解了 我们为什么忽略底数了
有时候,我们去计算时间复杂度的时候 发现不是一个 简单的O(n) 或者O(n^2), 而是一个复杂的表达式,例如:
O(2*n^2 + 10*n + 1000)
那这里我们通常如何描述这个算法的时间复杂度呢,一种方法就是简化法
去掉运行时间中的加法常数项 (因为常数项并不会因为n的增大而增加计算机的操作次数)
O(2*n^2 + 10*n)
去掉常数系数 (我们刚刚已经详细讲过为什么可以去掉常数项的原因了)
O(n^2 + n)
只保留保留最高项 去掉数量级小一级的n (因为n^2 的数据规模远大于 n),最终简化为:
O(n^2)
如果这一步同学们理解有困难,那也可以做提取n的操作,变成 O(n(n+1)) ,省略加法常数项后 也别变成了
O(n^2)
所以最后我们说:我们这个算法的算法时间复杂度是 O(n^2)
也可以用另一种简化的思路,当n大于40的时候 , 这个复杂度 会一直小于 O(3*n^2)
O(2*n^2 + 10*n + 1000) < O(3*n^2)
所以说 最后我们省略掉常数项系数最终时间复杂度也是 O(n^2)
我们通过一道题目,来看一下具体时间复杂度应该怎么算
题目描述:找出n个字符串中相同的两个字符串(假设这里只有两个相同的字符串)
一些同学可能以为解决这道题目可以采用枚举遍历的解法,时间复杂度是 O(n^2)
这个时间复杂度其实是不对的。
这里 一些同学忽略了字符串比较的时间消耗,这里并不像int 型数字做比较那么简单
除了n^2 次的遍历次数外, 字符串比较依然要消耗m次操作(m也就是字母串的长度),所以时间复杂度是 O(m*n*n)
那么我们再想一下其他解题思路
我们先排对n个字符串按字典序来排序,排序后n个字符串就是有序的,意味着两个相同的字符串就是挨在一起
然后在遍历一遍n个字符串,这样就找到两个相同的字符串了
那我们来看看这种算法的时间复杂度
快速排序时间复杂度 为O(nlogn),依然要考虑字符串的长度是m,那么快速排序每次的比较都要有m次的字符比较的操作,就是 O(m*n*logn)
之后我们还要遍历一遍这n个字符串找出两个相同的字符串,别忘了遍历的时候依然要比较字符串,所以总共的时间复杂度是 O(m*n*logn + n*m)
我们对 O(m*n*logn + n*m) 进行简化操作,把 m*n 提取出来变成 O(m*n*(logn + 1)) ,
在省略常数项最后的时间复杂度是 O(m*n*logn) , 那我们比较一下时间效率 O(m*n*logn) 是不是比第一种方法 O(m*n*n) 更快一些呢
很明显 O(m*n*logn) 要优于 O(m*n*n)
所以 先把字符串集合排序在遍历一遍找到两个相同字符串的方式要比直接暴力枚举的方式更快 。
通过这个例子 希望大家对时间复杂的是怎么算的有一个初步的理解和认识。
关于排序算法,看这一篇就够了!这篇看不懂麻烦找我拿红包
排序算法是《数据结构与算法》中最基本的算法之一。
排序算法可以分为内部排序和外部排序。
内部排序是数据记录在内存中进行排序。
而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。
常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。
用一张图概括:
时间复杂度与空间复杂度
关于时间复杂度:
- 平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。
- 线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;
- O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序
- 线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。
关于稳定性:
- 稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。
- 不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。
1. 冒泡排序
1.1 算法步骤
- 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
1.2 动画演示
1.3 参考代码
1// Java 代码实现
2public class BubbleSort implements IArraySort {
3
4 @Override
5 public int[] sort(int[] sourceArray) throws Exception {
6 // 对 arr 进行拷贝,不改变参数内容
7 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
8
9 for (int i = 1; i < arr.length; i++) {
10 // 设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。
11 boolean flag = true;
12
13 for (int j = 0; j < arr.length - i; j++) {
14 if (arr[j] > arr[j + 1]) {
15 int tmp = arr[j];
16 arr[j] = arr[j + 1];
17 arr[j + 1] = tmp;
18
19 flag = false;
20 }
21 }
22
23 if (flag) {
24 break;
25 }
26 }
27 return arr;
28 }
29}
2. 选择排序
2.1 算法步骤
- 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
- 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
- 重复第二步,直到所有元素均排序完毕。
2.2 动画演示
2.3 参考代码
1//Java 代码实现
2public class SelectionSort implements IArraySort {
3
4 @Override
5 public int[] sort(int[] sourceArray) throws Exception {
6 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
7
8 // 总共要经过 N-1 轮比较
9 for (int i = 0; i < arr.length - 1; i++) {
10 int min = i;
11
12 // 每轮需要比较的次数 N-i
13 for (int j = i + 1; j < arr.length; j++) {
14 if (arr[j] < arr[min]) {
15 // 记录目前能找到的最小值元素的下标
16 min = j;
17 }
18 }
19
20 // 将找到的最小值和i位置所在的值进行交换
21 if (i != min) {
22 int tmp = arr[i];
23 arr[i] = arr[min];
24 arr[min] = tmp;
25 }
26
27 }
28 return arr;
29 }
30}
3. 插入排序
3.1 算法步骤
- 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
- 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)
3.2 动画演示
3.3 参考代码
1//Java 代码实现
2public class InsertSort implements IArraySort {
3
4 @Override
5 public int[] sort(int[] sourceArray) throws Exception {
6 // 对 arr 进行拷贝,不改变参数内容
7 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
8
9 // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
10 for (int i = 1; i < arr.length; i++) {
11
12 // 记录要插入的数据
13 int tmp = arr[i];
14
15 // 从已经排序的序列最右边的开始比较,找到比其小的数
16 int j = i;
17 while (j > 0 && tmp < arr[j - 1]) {
18 arr[j] = arr[j - 1];
19 j--;
20 }
21
22 // 存在比其小的数,插入
23 if (j != i) {
24 arr[j] = tmp;
25 }
26
27 }
28 return arr;
29 }
30}
4. 希尔排序
4.1 算法步骤
- 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
- 按增量序列个数 k,对序列进行 k 趟排序;
- 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
4.2 动画演示
4.3 参考代码
1//Java 代码实现
2public class ShellSort implements IArraySort {
3
4 @Override
5 public int[] sort(int[] sourceArray) throws Exception {
6 // 对 arr 进行拷贝,不改变参数内容
7 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
8
9 int gap = 1;
10 while (gap < arr.length) {
11 gap = gap * 3 + 1;
12 }
13
14 while (gap > 0) {
15 for (int i = gap; i < arr.length; i++) {
16 int tmp = arr[i];
17 int j = i - gap;
18 while (j >= 0 && arr[j] > tmp) {
19 arr[j + gap] = arr[j];
20 j -= gap;
21 }
22 arr[j + gap] = tmp;
23 }
24 gap = (int) Math.floor(gap / 3);
25 }
26
27 return arr;
28 }
29}
5. 归并排序
5.1 算法步骤
- 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
- 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
- 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
- 重复步骤 3 直到某一指针达到序列尾;
- 将另一序列剩下的所有元素直接复制到合并序列尾。
5.2 动画演示
5.3 参考代码
1//Java 代码实现
public class MergeSort implements IArraySort {
2
3 @Override
4 public int[] sort(int[] sourceArray) throws Exception {
5 // 对 arr 进行拷贝,不改变参数内容
6 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
7
8 if (arr.length < 2) {
9 return arr;
10 }
11 int middle = (int) Math.floor(arr.length / 2);
12
13 int[] left = Arrays.copyOfRange(arr, 0, middle);
14 int[] right = Arrays.copyOfRange(arr, middle, arr.length);
15
16 return merge(sort(left), sort(right));
17 }
18
19 protected int[] merge(int[] left, int[] right) {
20 int[] result = new int[left.length + right.length];
21 int i = 0;
22 while (left.length > 0 && right.length > 0) {
23 if (left[0] <= right[0]) {
24 result[i++] = left[0];
25 left = Arrays.copyOfRange(left, 1, left.length);
26 } else {
27 result[i++] = right[0];
28 right = Arrays.copyOfRange(right, 1, right.length);
29 }
30 }
31
32 while (left.length > 0) {
33 result[i++] = left[0];
34 left = Arrays.copyOfRange(left, 1, left.length);
35 }
36
37 while (right.length > 0) {
38 result[i++] = right[0];
39 right = Arrays.copyOfRange(right, 1, right.length);
40 }
41
42 return result;
43 }
44
45}
6. 快速排序
6.1 算法步骤
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
6.2 动画演示
6.3 参考代码
1//Java 代码实现
2public class QuickSort implements IArraySort {
3
4 @Override
5 public int[] sort(int[] sourceArray) throws Exception {
6 // 对 arr 进行拷贝,不改变参数内容
7 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
8
9 return quickSort(arr, 0, arr.length - 1);
10 }
11
12 private int[] quickSort(int[] arr, int left, int right) {
13 if (left < right) {
14 int partitionIndex = partition(arr, left, right);
15 quickSort(arr, left, partitionIndex - 1);
16 quickSort(arr, partitionIndex + 1, right);
17 }
18 return arr;
19 }
20
21 private int partition(int[] arr, int left, int right) {
22 // 设定基准值(pivot)
23 int pivot = left;
24 int index = pivot + 1;
25 for (int i = index; i <= right; i++) {
26 if (arr[i] < arr[pivot]) {
27 swap(arr, i, index);
28 index++;
29 }
30 }
31 swap(arr, pivot, index - 1);
32 return index - 1;
33 }
34
35 private void swap(int[] arr, int i, int j) {
36 int temp = arr[i];
37 arr[i] = arr[j];
38 arr[j] = temp;
39 }
40
41}
7. 堆排序
7.1 算法步骤
- 创建一个堆 H[0……n-1];
- 把堆首(最大值)和堆尾互换;
- 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
- 重复步骤 2,直到堆的尺寸为 1。
7.2 动画演示
7.3 参考代码
1//Java 代码实现
2public class HeapSort implements IArraySort {
3
4 @Override
5 public int[] sort(int[] sourceArray) throws Exception {
6 // 对 arr 进行拷贝,不改变参数内容
7 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
8
9 int len = arr.length;
10
11 buildMaxHeap(arr, len);
12
13 for (int i = len - 1; i > 0; i--) {
14 swap(arr, 0, i);
15 len--;
16 heapify(arr, 0, len);
17 }
18 return arr;
19 }
20
21 private void buildMaxHeap(int[] arr, int len) {
22 for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
23 heapify(arr, i, len);
24 }
25 }
26
27 private void heapify(int[] arr, int i, int len) {
28 int left = 2 * i + 1;
29 int right = 2 * i + 2;
30 int largest = i;
31
32 if (left < len && arr[left] > arr[largest]) {
33 largest = left;
34 }
35
36 if (right < len && arr[right] > arr[largest]) {
37 largest = right;
38 }
39
40 if (largest != i) {
41 swap(arr, i, largest);
42 heapify(arr, largest, len);
43 }
44 }
45
46 private void swap(int[] arr, int i, int j) {
47 int temp = arr[i];
48 arr[i] = arr[j];
49 arr[j] = temp;
50 }
51
52}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xKsfRNbi-1620905453758)()]
8. 计数排序
8.1 算法步骤
- 花O(n)的时间扫描一下整个序列 A,获取最小值 min 和最大值 max
- 开辟一块新的空间创建新的数组 B,长度为 ( max - min + 1)
- 数组 B 中 index 的元素记录的值是 A 中某元素出现的次数
- 最后输出目标整数序列,具体的逻辑是遍历数组 B,输出相应元素以及对应的个数
8.2 动画演示
8.3 参考代码
1//Java 代码实现
2public class CountingSort implements IArraySort {
3
4 @Override
5 public int[] sort(int[] sourceArray) throws Exception {
6 // 对 arr 进行拷贝,不改变参数内容
7 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
8
9 int maxValue = getMaxValue(arr);
10
11 return countingSort(arr, maxValue);
12 }
13
14 private int[] countingSort(int[] arr, int maxValue) {
15 int bucketLen = maxValue + 1;
16 int[] bucket = new int[bucketLen];
17
18 for (int value : arr) {
19 bucket[value]++;
20 }
21
22 int sortedIndex = 0;
23 for (int j = 0; j < bucketLen; j++) {
24 while (bucket[j] > 0) {
25 arr[sortedIndex++] = j;
26 bucket[j]--;
27 }
28 }
29 return arr;
30 }
31
32 private int getMaxValue(int[] arr) {
33 int maxValue = arr[0];
34 for (int value : arr) {
35 if (maxValue < value) {
36 maxValue = value;
37 }
38 }
39 return maxValue;
40 }
41
42}
9. 桶排序
9.1 算法步骤
- 设置固定数量的空桶。
- 把数据放到对应的桶中。
- 对每个不为空的桶中数据进行排序。
- 拼接不为空的桶中数据,得到结果
9.2 动画演示
9.3 参考代码
1//Java 代码实现
2public class BucketSort implements IArraySort {
3
4 private static final InsertSort insertSort = new InsertSort();
5
6 @Override
7 public int[] sort(int[] sourceArray) throws Exception {
8 // 对 arr 进行拷贝,不改变参数内容
9 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
10
11 return bucketSort(arr, 5);
12 }
13
14 private int[] bucketSort(int[] arr, int bucketSize) throws Exception {
15 if (arr.length == 0) {
16 return arr;
17 }
18
19 int minValue = arr[0];
20 int maxValue = arr[0];
21 for (int value : arr) {
22 if (value < minValue) {
23 minValue = value;
24 } else if (value > maxValue) {
25 maxValue = value;
26 }
27 }
28
29 int bucketCount = (int) Math.floor((maxValue - minValue) / bucketSize) + 1;
30 int[][] buckets = new int[bucketCount][0];
31
32 // 利用映射函数将数据分配到各个桶中
33 for (int i = 0; i < arr.length; i++) {
34 int index = (int) Math.floor((arr[i] - minValue) / bucketSize);
35 buckets[index] = arrAppend(buckets[index], arr[i]);
36 }
37
38 int arrIndex = 0;
39 for (int[] bucket : buckets) {
40 if (bucket.length <= 0) {
41 continue;
42 }
43 // 对每个桶进行排序,这里使用了插入排序
44 bucket = insertSort.sort(bucket);
45 for (int value : bucket) {
46 arr[arrIndex++] = value;
47 }
48 }
49
50 return arr;
51 }
52
53 /**
54 * 自动扩容,并保存数据
55 *
56 * @param arr
57 * @param value
58 */
59 private int[] arrAppend(int[] arr, int value) {
60 arr = Arrays.copyOf(arr, arr.length + 1);
61 arr[arr.length - 1] = value;
62 return arr;
63 }
64
65}
10. 基数排序
10.1 算法步骤
- 将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零
- 从最低位开始,依次进行一次排序
- 从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列
10.2 动画演示
10.3 参考代码
1//Java 代码实现
2public class RadixSort implements IArraySort {
3
4 @Override
5 public int[] sort(int[] sourceArray) throws Exception {
6 // 对 arr 进行拷贝,不改变参数内容
7 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
8
9 int maxDigit = getMaxDigit(arr);
10 return radixSort(arr, maxDigit);
11 }
12
13 /**
14 * 获取最高位数
15 */
16 private int getMaxDigit(int[] arr) {
17 int maxValue = getMaxValue(arr);
18 return getNumLenght(maxValue);
19 }
20
21 private int getMaxValue(int[] arr) {
22 int maxValue = arr[0];
23 for (int value : arr) {
24 if (maxValue < value) {
25 maxValue = value;
26 }
27 }
28 return maxValue;
29 }
30
31 protected int getNumLenght(long num) {
32 if (num == 0) {
33 return 1;
34 }
35 int lenght = 0;
36 for (long temp = num; temp != 0; temp /= 10) {
37 lenght++;
38 }
39 return lenght;
40 }
41
42 private int[] radixSort(int[] arr, int maxDigit) {
43 int mod = 10;
44 int dev = 1;
45
46 for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
47 // 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)
48 int[][] counter = new int[mod * 2][0];
49
50 for (int j = 0; j < arr.length; j++) {
51 int bucket = ((arr[j] % mod) / dev) + mod;
52 counter[bucket] = arrayAppend(counter[bucket], arr[j]);
53 }
54
55 int pos = 0;
56 for (int[] bucket : counter) {
57 for (int value : bucket) {
58 arr[pos++] = value;
59 }
60 }
61 }
62
63 return arr;
64 }
65 private int[] arrayAppend(int[] arr, int value) {
66 arr = Arrays.copyOf(arr, arr.length + 1);
67 arr[arr.length - 1] = value;
68 return arr;
69 }
70}
以上是关于究竟啥是时间复杂度,怎么求时间复杂度,看这一篇就够了的主要内容,如果未能解决你的问题,请参考以下文章
如何基于Flink+TensorFlow打造实时智能异常检测平台?只看这一篇就够了