如何提高分布式机器学习系统的执行效率
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何提高分布式机器学习系统的执行效率相关的知识,希望对你有一定的参考价值。
参考技术A 对于这个问题……直接说网络渲染的要求吧(这可是秘密资料,照着笔记给你打出来,好好看哦)1.不支持中文(包括材质名称,贴图名称,模型名称以及路径名称)2.不支持深路径(文件名称,不宜过长)。3.场景贴图,光度学文件,光子文件,必须在同一文件夹下。4.操作系统必须统一,并且SP必须相同。5.必须有相互可以访问的局域网。6.必须有一台主机并且所有服务器可以访问。7.max版本必须相同,并且sp相同。8.max插件版本必须相同。9.vr的版本必须相同并且必须要有网渲功能。10.渲染时不可弹出任何信息窗口。11.必须共享项目文件,并且所有服务器及主机可以访问。这些问题相信你大部分都已经解决了,主要是细节部分一定注意,尤其是路径名称,还有渲染时别玩QQ哦,不过也静止弹出消息。祝你好运!如何用 Python 构建一个简单的分布式系统
分布式爬虫概览何谓分布式爬虫?
通俗的讲,分布式爬虫就是多台机器多个
spider
对多个
url
的同时处理问题,分布式的方式可以极大提高程序的抓取效率。
构建分布式爬虫通畅需要考虑的问题
(1)如何能保证多台机器同时抓取同一个URL?
(2)如果某个节点挂掉,会不会影响其它节点,任务如何继续?
(3)既然是分布式,如何保证架构的可伸缩性和可扩展性?不同优先级的抓取任务如何进行资源分配和调度?
基于上述问题,我选择使用celery作为分布式任务调度工具,是分布式爬虫中任务和资源调度的核心模块。它会把所有任务都通过消息队列发送给各个分布式节点进行执行,所以可以很好的保证url不会被重复抓取;它在检测到worker挂掉的情况下,会尝试向其他的worker重新发送这个任务信息,这样第二个问题也可以得到解决;celery自带任务路由,我们可以根据实际情况在不同的节点上运行不同的抓取任务(在实战篇我会讲到)。本文主要就是带大家了解一下celery的方方面面(有celery相关经验的同学和大牛可以直接跳过了)
Celery知识储备
celery基础讲解
按celery官网的介绍来说
Celery
是一个简单、灵活且可靠的,处理大量消息的分布式系统,并且提供维护这样一个系统的必需工具。它是一个专注于实时处理的任务队列,同时也支持任务调度。
下面几个关于celery的核心知识点
broker:翻译过来叫做中间人。它是一个消息传输的中间件,可以理解为一个邮箱。每当应用程序调用celery的异步任务的时候,会向broker传递消息,而后celery的worker将会取到消息,执行相应程序。这其实就是消费者和生产者之间的桥梁。
backend:
通常程序发送的消息,发完就完了,可能都不知道对方时候接受了。为此,celery实现了一个backend,用于存储这些消息以及celery执行的一些消息和结果。
worker:
Celery类的实例,作用就是执行各种任务。注意在celery3.1.25后windows是不支持celery
worker的!
producer:
发送任务,将其传递给broker
beat:
celery实现的定时任务。可以将其理解为一个producer,因为它也是通过网络调用定时将任务发送给worker执行。注意在windows上celery是不支持定时任务的!
下面是关于celery的架构示意图,结合上面文字的话应该会更好理解
由于celery只是任务队列,而不是真正意义上的消息队列,它自身不具有存储数据的功能,所以broker和backend需要通过第三方工具来存储信息,celery官方推荐的是
RabbitMQ和Redis,另外mongodb等也可以作为broker或者backend,可能不会很稳定,我们这里选择Redis作为broker兼backend。
实际例子
先安装celery
pip
install
celery
我们以官网给出的例子来做说明,并对其进行扩展。首先在项目根目录下,这里我新建一个项目叫做celerystudy,然后切换到该项目目录下,新建文件tasks.py,然后在其中输入下面代码
这里我详细讲一下代码:我们先通过app=Celery()来实例化一个celery对象,在这个过程中,我们指定了它的broker,是redis的db
2,也指定了它的backend,是redis的db3,
broker和backend的连接形式大概是这样
redis://:password@hostname:port/db_number
然后定义了一个add函数,重点是@app.task,它的作用在我看来就是将add()
注册为一个类似服务的东西,本来只能通过本地调用的函数被它装饰后,就可以通过网络来调用。这个tasks.py中的app就是一个worker。它可以有很多任务,比如这里的任务函数add。我们再通过在命令行切换到项目根目录,执行
celery
-A
tasks
worker
-l
info
启动成功后就是下图所示的样子
这里我说一下各个参数的意思,-A指定的是app(即Celery实例)所在的文件模块,我们的app是放在tasks.py中,所以这里是
tasks;worker表示当前以worker的方式运行,难道还有别的方式?对的,比如运行定时任务就不用指定worker这个关键字;
-l
info表示该worker节点的日志等级是info,更多关于启动worker的参数(比如-c、-Q等常用的)请使用
celery
worker
--help
进行查看
将worker启动起来后,我们就可以通过网络来调用add函数了。我们在后面的分布式爬虫构建中也是采用这种方式分发和消费url的。在命令行先切换到项目根目录,然后打开python交互端
from
tasks
import
addrs
=
add.delay(2,
2)
这里的add.delay就是通过网络调用将任务发送给add所在的worker执行,这个时候我们可以在worker的界面看到接收的任务和计算的结果。
这里是异步调用,如果我们需要返回的结果,那么要等rs的ready状态true才行。这里add看不出效果,不过试想一下,如果我们是调用的比较占时间的io任务,那么异步任务就比较有价值了
上面讲的是从Python交互终端中调用add函数,如果我们要从另外一个py文件调用呢?除了通过import然后add.delay()这种方式,我们还可以通过send_task()这种方式,我们在项目根目录另外新建一个py文件叫做
excute_tasks.py,在其中写下如下的代码
from
tasks
import
addif
__name__
==
'__main__':
add.delay(5,
10)
这时候可以在celery的worker界面看到执行的结果
此外,我们还可以通过send_task()来调用,将excute_tasks.py改成这样
这种方式也是可以的。send_task()还可能接收到为注册(即通过@app.task装饰)的任务,这个时候worker会忽略这个消息
定时任务
上面部分讲了怎么启动worker和调用worker的相关函数,这里再讲一下celery的定时任务。
爬虫由于其特殊性,可能需要定时做增量抓取,也可能需要定时做模拟登陆,以防止cookie过期,而celery恰恰就实现了定时任务的功能。在上述基础上,我们将tasks.py文件改成如下内容
然后先通过ctrl+c停掉前一个worker,因为我们代码改了,需要重启worker才会生效。我们再次以celery
-A
tasks
worker
-l
info这个命令开启worker。
这个时候我们只是开启了worker,如果要让worker执行任务,那么还需要通过beat给它定时发送,我们再开一个命令行,切换到项目根目录,通过
这样就表示定时任务已经开始运行了。
眼尖的同学可能看到我这里celery的版本是3.1.25,这是因为celery支持的windows最高版本是3.1.25。由于我的分布式微博爬虫的worker也同时部署在了windows上,所以我选择了使用
3.1.25。如果全是linux系统,建议使用celery4。
此外,还有一点需要注意,在celery4后,定时任务(通过schedule调度的会这样,通过crontab调度的会马上执行)会在当前时间再过定时间隔执行第一次任务,比如我这里设置的是60秒的间隔,那么第一次执行add会在我们通过celery
beat
-A
tasks
-l
info启动定时任务后60秒才执行;celery3.1.25则会马上执行该任务 参考技术A ython使用multiprocessing实现一个最简单的分布式作业调度系统介绍Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把本回答被提问者采纳
以上是关于如何提高分布式机器学习系统的执行效率的主要内容,如果未能解决你的问题,请参考以下文章
效率倍增,PyCaret:一个开源低代码的 Python 机器学习工具
如何减轻软件开发的回测压力?Facebook 已经用上了机器学习