js数组去重利用set
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了js数组去重利用set相关的知识,希望对你有一定的参考价值。
参考技术A const nums = [1,2,3,4,3,2,1]uniq1 = [...new Set(nums)]
uniq2 = Array.from(new Set(nums))
定义:新数据结构Set,类似于数组,但成员值不重复
使用: new Set()
ps:New Set() 接受一个数组或类数组对象,在Set内部, NAN相等,两个对象不等,可以用length检测,可以用for...of遍历
size:返回值的个数
add(val):添加值,返回set结构;
delete(val):删除值,返回布尔值
has(val):是否包含,返回布尔值
clear():清除所有成员,无返回值
与set类似,也是不重复值的集合
与set的区别:1.weakset 成员只能是对象,对象都是弱引用,垃圾回收机制不考虑,不可遍历
定义:类似于对象,也是键值dui的集合,但键可以是各种类型(键可以为对象),两个键严格相等才为同一个键。
Var m = new Map(), o = 1:2
m.set(o, ‘hi’)
m.get(o)
m.has(o) //只有对同一个对象的引用才是同一个键
size:返回值的个数
set(key, val):添加值,返回Map结构;
Get(key): 获取值,返回val
Has(key):是否包含,返回布尔值
Delete(key):删除值,返回布尔值
Clear():清除所有成员,无返回值
定义:把泪数组对象和有iterator接口的对象(Set Map Array)转化为数组
使用:Array.from(arrayLike[, mapFn[, thisArg]]) 参数:类数组,处理函数map,map中的this指向的对象
Array.from([1, 2, 3, 4, 5], (n) => n + 1) // 每个值都加一
const map = new Map()
map.set(‘k1’, 1)
map.set(‘k2’, 2)
Const a = Array.from(map); // [[‘k1’,1], [‘k2’, 2]]
const set1 = new Set()
Set1.add(1).add(2).add(3)
Var a = Array.from(set1) // [1,2,3]
console.log('%s', Array.from('hello world’)) //["h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d"]
console.log('%s', Array.from('\u767d\u8272\u7684\u6d77’)) //["白", "色", "的", "海"]
var a = 0:1, 2:3, 4:5, length: 5;var b = 0:1, 2:3, 4:5, length: 3
Array.from(a) // [1,undefined,3,undefined,4]
Array.from(b) // [1,undefined,3]
Tensorflow学习教程------参数保存和提取重利用
#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets(‘MNIST_data‘,one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size def weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.1) #生成一个截断的正态分布 return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape = shape) return tf.Variable(initial) #卷基层 def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding=‘SAME‘) #池化层 def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘) #定义两个placeholder x = tf.placeholder(tf.float32, [None,784]) y = tf.placeholder(tf.float32,[None,10]) #改变x的格式转为4D的向量[batch,in_height,in_width,in_channels] x_image = tf.reshape(x, [-1,28,28,1]) #初始化第一个卷基层的权值和偏置 W_conv1 = weight_variable([5,5,1,32]) #5*5的采样窗口 32个卷积核从一个平面抽取特征 32个卷积核是自定义的 b_conv1 = bias_variable([32]) #每个卷积核一个偏置值 #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数 h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1) h_pool1 = max_pool_2x2(h_conv1) #进行max-pooling #初始化第二个卷基层的权值和偏置 W_conv2 = weight_variable([5,5,32,64]) # 5*5的采样窗口 64个卷积核从32个平面抽取特征 由于前一层操作得到了32个特征图 b_conv2 = bias_variable([64]) #每一个卷积核一个偏置值 #把h_pool1和权值向量进行卷积 再加上偏置值 然后应用于relu激活函数 h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #进行max-pooling #28x28的图片第一次卷积后还是28x28 第一次池化后变为14x14 #第二次卷积后 变为14x14 第二次池化后变为7x7 #通过上面操作后得到64张7x7的平面 #初始化第一个全连接层的权值 W_fc1 = weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元 b_fc1 = bias_variable([1024]) #1024个节点 #把第二个池化层的输出扁平化为一维 h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) #求第一个全连接层的输出 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) #keep_prob用来表示神经元的输出概率 keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) #初始化第二个全连接层 W_fc2 = weight_variable([1024,10]) b_fc2 = bias_variable([10]) #计算输出 prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) #交叉熵代价函数 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #使用AdamOptimizer进行优化 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #结果存放在一个布尔列表中 correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(13): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) print ("Iter "+ str(epoch) + ", Testing Accuracy= " + str(acc)) saver.save(sess,save_path=‘/home/bayes/logs/mnist_net.ckpt‘)
提取保存的参数进行准确率验证
#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets(‘MNIST_data‘,one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size def weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.1) #生成一个截断的正态分布 return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape = shape) return tf.Variable(initial) #卷基层 def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding=‘SAME‘) #池化层 def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘) #定义两个placeholder x = tf.placeholder(tf.float32, [None,784]) y = tf.placeholder(tf.float32,[None,10]) #改变x的格式转为4D的向量[batch,in_height,in_width,in_channels] x_image = tf.reshape(x, [-1,28,28,1]) #初始化第一个卷基层的权值和偏置 W_conv1 = weight_variable([5,5,1,32]) #5*5的采样窗口 32个卷积核从一个平面抽取特征 32个卷积核是自定义的 b_conv1 = bias_variable([32]) #每个卷积核一个偏置值 #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数 h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1) h_pool1 = max_pool_2x2(h_conv1) #进行max-pooling #初始化第二个卷基层的权值和偏置 W_conv2 = weight_variable([5,5,32,64]) # 5*5的采样窗口 64个卷积核从32个平面抽取特征 由于前一层操作得到了32个特征图 b_conv2 = bias_variable([64]) #每一个卷积核一个偏置值 #把h_pool1和权值向量进行卷积 再加上偏置值 然后应用于relu激活函数 h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #进行max-pooling #28x28的图片第一次卷积后还是28x28 第一次池化后变为14x14 #第二次卷积后 变为14x14 第二次池化后变为7x7 #通过上面操作后得到64张7x7的平面 #初始化第一个全连接层的权值 W_fc1 = weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元 b_fc1 = bias_variable([1024]) #1024个节点 #把第二个池化层的输出扁平化为一维 h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) #求第一个全连接层的输出 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) #keep_prob用来表示神经元的输出概率 keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) #初始化第二个全连接层 W_fc2 = weight_variable([1024,10]) b_fc2 = bias_variable([10]) #计算输出 prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) #交叉熵代价函数 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #使用AdamOptimizer进行优化 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #结果存放在一个布尔列表中 correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print (sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})) saver.restore(sess, ‘/home/bayes/logs/mnist_net.ckpt‘) print (sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}))
结果 初始化后没有经过训练的参数准确率低 训练后从模型中提取的参数准确率高
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0) 0.1117 0.9893
以上是关于js数组去重利用set的主要内容,如果未能解决你的问题,请参考以下文章