Rocketmq、kfaka太重,小团队可以选啥MQ?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Rocketmq、kfaka太重,小团队可以选啥MQ?相关的知识,希望对你有一定的参考价值。
参考技术A 提起消息队列,大部分java程序员并不陌生,在盛行的微服务体系下,rocketMQ,kfaka是很多java程序员的必修课。然而对于单体应用,rocketMQ亦或kfaka未免显得太重,这时又该怎么选择消息队列呢?答案就是熟悉的redis
笔者的需求背景是这样的,公司有两个java服务,一个负责前台业务,也就是用户端的业务;一个负责后台业务,也就是管理端的业务。两个服务都只用到了mysql和redis,算是比较简单的业务服务。前台业务部署在两台服务器上,并且需要支持弹性扩张;后台业务部署在一台服务器上。此时有一个刷新本地缓存的功能,需要在管理后台服务发起,两个用户前台服务执行。
第一版,采用了直接请求的方案。管理后台服务会直接调用前台服务的内网IP,通过http请求直接刷机器的本地缓存。彼时在功能实现后,出现了些许稳定性问题。因为两个服务都有做权限控制,在http请求时可能是漏了一些关键数据。重点是直接调用维护麻烦,管理后台需要循环调用两个前台服务的接口,如果加了服务器还要改配置改代码。
改版时,想到这是一个典型的消息队列问题。生产者是管理后台,消费者是用户前台。集成rocketMQ或者kfaka肯定可以满足需求,但是维护工作量也是增加了很多,而已用组件里面的redis可以做消息队列,说实话还没用过redis做消息队列,正好体验一下。
调查了下,Redis实现消息队列可以说有三种方式:List点对点,pub/sub,stream。
综合考虑,先排除List,再考虑时间因素,先上一个pub/sub。
这部分就是看代码了,笔者使用的是redis5.0,spring-boot 2.3。通用的redis配置就不负伤了,讲讲消息队列需要的配置及代码
第一步是增加bean配置。初始化监听器、监听者与监听方法:
第二步,实现receiver。这里笔者在收到消息后,将其转为内部事件再次分发,这样这部分代码可以通用。再有项目需要用到直接复制过去即可。
第三步,实现publisher
使用的时候,消息发送后,各个接收端就能实现消息的监听与消费。
对于刷本地缓存这种操作,这个消息队列是能够符合要求的。但是其他的业务就不好说了,比如商品、订单、用户信息等等,这种不能持久化的消息队列明显是会出大问题的。给个赞,后面笔者再试下stream做消息队列的集成。
阿里中间件团队,十分钟带你入门 RocketMQ
点击蓝色“架构文摘”关注我哟
加个“星标”,每天上午 09:25,干货推送!
本文首先引出消息中间件通常需要解决哪些问题,在解决这些问题当中会遇到什么困难,Apache RocketMQ作为阿里开源的一款高性能、高吞吐量的分布式消息中间件否可以解决,规范中如何定义这些问题。然后本文将介绍RocketMQ的架构设计,以期让读者快速了解RocketMQ。
消息中间件需要解决哪些问题?
Publish/Subscribe
发布订阅是消息中间件的最基本功能,也是相对于传统RPC通信而言。在此不再详述。
Message Priority
规范中描述的优先级是指在一个消息队列中,每条消息都有不同的优先级,一般用整数来描述,优先级高的消息先投递,如果消息完全在一个内存队列中,那么在投递前可以按照优先级排序,令优先级高的先投递。
由于RocketMQ所有消息都是持久化的,所以如果按照优先级来排序,开销会非常大,因此RocketMQ没有特意支持消息优先级,但是可以通过变通的方式实现类似功能,即单独配置一个优先级高的队列,和一个普通优先级的队列, 将不同优先级发送到不同队列即可。
对于优先级问题,可以归纳为2类:
只要达到优先级目的即可,不是严格意义上的优先级,通常将优先级划分为高、中、低,或者再多几个级别。每个优先级可以用不同的topic表示,发消息时,指定不同的topic来表示优先级,这种方式可以解决绝大部分的优先级问题,但是对业务的优先级精确性做了妥协。
严格的优先级,优先级用整数表示,例如0 ~ 65535,这种优先级问题一般使用不同topic解决就非常不合适。如果要让MQ解决此问题,会对MQ的性能造成非常大的影响。这里要确保一点,业务上是否确实需要这种严格的优先级,如果将优先级压缩成几个,对业务的影响有多大?
Message Order
消息有序指的是一类消息消费时,能按照发送的顺序来消费。例如:一个订单产生了3条消息,分别是订单创建,订单付款,订单完成。消费时,要按照这个顺序消费才能有意义。但是同时订单之间是可以并行消费的。
RocketMQ可以严格的保证消息有序。
Message Filter
Broker端消息过滤
在Broker中,按照Consumer的要求做过滤,优点是减少了对于Consumer无用消息的网络传输。
缺点是增加了Broker的负担,实现相对复杂。
淘宝Notify支持多种过滤方式,包含直接按照消息类型过滤,灵活的语法表达式过滤,几乎可以满足最苛刻的过滤需求。
淘宝RocketMQ支持按照简单的Message Tag过滤,也支持按照Message Header、body进行过滤。
CORBA Notification规范中也支持灵活的语法表达式过滤。
Consumer端消息过滤
这种过滤方式可由应用完全自定义实现,但是缺点是很多无用的消息要传输到Consumer端。
Message Persistence
消息中间件通常采用的几种持久化方式:
持久化到数据库,例如Mysql。
持久化到KV存储,例如levelDB、伯克利DB等KV存储系统。
文件记录形式持久化,例如Kafka,RocketMQ
对内存数据做一个持久化镜像,例如beanstalkd,VisiNotify
(1)、(2)、(3)三种持久化方式都具有将内存队列Buffer进行扩展的能力,(4)只是一个内存的镜像,作用是当Broker挂掉重启后仍然能将之前内存的数据恢复出来。
JMS与CORBA Notification规范没有明确说明如何持久化,但是持久化部分的性能直接决定了整个消息中间件的性能。
RocketMQ充分利用Linux文件系统内存cache来提高性能。
Message Reliablity
影响消息可靠性的几种情况:
Broker正常关闭
Broker异常Crash
OS Crash
机器掉电,但是能立即恢复供电情况。
机器无法开机(可能是cpu、主板、内存等关键设备损坏)
磁盘设备损坏。
(1)、(2)、(3)、(4)四种情况都属于硬件资源可立即恢复情况,RocketMQ在这四种情况下能保证消息不丢,或者丢失少量数据(依赖刷盘方式是同步还是异步)。
(5)、(6)属于单点故障,且无法恢复,一旦发生,在此单点上的消息全部丢失。RocketMQ在这两种情况下,通过异步复制,可保证99%的消息不丢,但是仍然会有极少量的消息可能丢失。通过同步双写技术可以完全避免单点,同步双写势必会影响性能,适合对消息可靠性要求极高的场合,例如与Money相关的应用。
RocketMQ从3.0版本开始支持同步双写。
Low Latency Messaging
在消息不堆积情况下,消息到达Broker后,能立刻到达Consumer。
RocketMQ使用长轮询Pull方式,可保证消息非常实时,消息实时性不低于Push。
At least Once
是指每个消息必须投递一次。
RocketMQ Consumer先pull消息到本地,消费完成后,才向服务器返回ack,如果没有消费一定不会ack消息,所以RocketMQ可以很好的支持此特性。
Exactly Only Once
发送消息阶段,不允许发送重复的消息。
消费消息阶段,不允许消费重复的消息。
只有以上两个条件都满足情况下,才能认为消息是“Exactly Only Once”,而要实现以上两点,在分布式系统环境下,不可避免要产生巨大的开销。所以RocketMQ为了追求高性能,并不保证此特性,要求在业务上进行去重,也就是说消费消息要做到幂等性。RocketMQ虽然不能严格保证不重复,但是正常情况下很少会出现重复发送、消费情况,只有网络异常,Consumer启停等异常情况下会出现消息重复。
Broker的Buffer满了怎么办?
Broker的Buffer通常指的是Broker中一个队列的内存Buffer大小,这类Buffer通常大小有限,如果Buffer满了以后怎么办?
下面是CORBA Notification规范中处理方式:
RejectNewEvents 拒绝新来的消息,向Producer返回RejectNewEvents错误码。
按照特定策略丢弃已有消息
AnyOrder - Any event may be discarded on overflow. This is the default setting for this property.
FifoOrder - The first event received will be the first discarded.
LifoOrder - The last event received will be the first discarded.
PriorityOrder - Events should be discarded in priority order, such that lower priority events will be discarded before higher priority events.
DeadlineOrder - Events should be discarded in the order of shortest expiry deadline first.
RocketMQ没有内存Buffer概念,RocketMQ的队列都是持久化磁盘,数据定期清除。
对于此问题的解决思路,RocketMQ同其他MQ有非常显著的区别,RocketMQ的内存Buffer抽象成一个无限长度的队列,不管有多少数据进来都能装得下,这个无限是有前提的,Broker会定期删除过期的数据,例如Broker只保存3天的消息,那么这个Buffer虽然长度无限,但是3天前的数据会被从队尾删除。
此问题的本质原因是网络调用存在不确定性,即既不成功也不失败的第三种状态,所以才产生了消息重复性问题。
回溯消费
回溯消费是指Consumer已经消费成功的消息,由于业务上需求需要重新消费,要支持此功能,Broker在向Consumer投递成功消息后,消息仍然需要保留。并且重新消费一般是按照时间维度,例如由于Consumer系统故障,恢复后需要重新消费1小时前的数据,那么Broker要提供一种机制,可以按照时间维度来回退消费进度。
RocketMQ支持按照时间回溯消费,时间维度精确到毫秒,可以向前回溯,也可以向后回溯。
消息堆积
消息中间件的主要功能是异步解耦,还有个重要功能是挡住前端的数据洪峰,保证后端系统的稳定性,这就要求消息中间件具有一定的消息堆积能力,消息堆积分以下两种情况:
消息堆积在内存Buffer,一旦超过内存Buffer,可以根据一定的丢弃策略来丢弃消息,如CORBA Notification规范中描述。适合能容忍丢弃消息的业务,这种情况消息的堆积能力主要在于内存Buffer大小,而且消息堆积后,性能下降不会太大,因为内存中数据多少对于对外提供的访问能力影响有限。
消息堆积到持久化存储系统中,例如DB,KV存储,文件记录形式。当消息不能在内存Cache命中时,要不可避免的访问磁盘,会产生大量读IO,读IO的吞吐量直接决定了消息堆积后的访问能力。
评估消息堆积能力主要有以下四点:
消息能堆积多少条,多少字节?即消息的堆积容量。
消息堆积后,发消息的吞吐量大小,是否会受堆积影响?
消息堆积后,正常消费的Consumer是否会受影响?
消息堆积后,访问堆积在磁盘的消息时,吞吐量有多大?
分布式事务
已知的几个分布式事务规范,如XA,JTA等。其中XA规范被各大数据库厂商广泛支持,如Oracle,Mysql等。其中XA的TM实现佼佼者如Oracle Tuxedo,在金融、电信等领域被广泛应用。
RocketMQ这种实现事务方式,没有通过KV存储做,而是通过Offset方式,存在一个显著缺陷,即通过Offset更改数据,会令系统的脏页过多,需要特别关注。
定时消息
定时消息是指消息发到Broker后,不能立刻被Consumer消费,要到特定的时间点或者等待特定的时间后才能被消费。
如果要支持任意的时间精度,在Broker层面,必须要做消息排序,如果再涉及到持久化,那么消息排序要不可避免的产生巨大性能开销。
RocketMQ支持定时消息,但是不支持任意时间精度,支持特定的level,例如定时5s,10s,1m等。
消息重试
Consumer消费消息失败后,要提供一种重试机制,令消息再消费一次。Consumer消费消息失败通常可以认为有以下几种情况:
由于消息本身的原因,例如反序列化失败,消息数据本身无法处理(例如话费充值,当前消息的手机号被注销,无法充值)等。这种错误通常需要跳过这条消息,再消费其他消息,而这条失败的消息即使立刻重试消费,99%也不成功,所以最好提供一种定时重试机制,即过10s秒后再重试。
由于依赖的下游应用服务不可用,例如db连接不可用,外系统网络不可达等。遇到这种错误,即使跳过当前失败的消息,消费其他消息同样也会报错。这种情况建议应用sleep 30s,再消费下一条消息,这样可以减轻Broker重试消息的压力。
RocketMQ Overview
RocketMQ是否解决了上述消息中间件面临的问题,接下来让我们一探究竟。
RocketMQ 是什么?
上图是一个典型的消息中间件收发消息的模型,RocketMQ也是这样的设计,简单说来,RocketMQ具有以下特点:
是一个队列模型的消息中间件,具有高性能、高可靠、高实时、分布式特点。
Producer、Consumer、队列都可以分布式。
Producer向一些队列轮流发送消息,队列集合称为Topic,Consumer如果做广播消费,则一个consumer实例消费这个Topic对应的所有队列,如果做集群消费,则多个* Consumer实例平均消费这个topic对应的队列集合。
能够保证严格的消息顺序
提供丰富的消息拉取模式
高效的订阅者水平扩展能力
实时的消息订阅机制
亿级消息堆积能力
较少的依赖
RocketMQ 物理部署结构
如上图所示, RocketMQ的部署结构有以下特点:
Name Server是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。
Broker部署相对复杂,Broker分为Master与Slave,一个Master可以对应多个Slave,但是一个Slave只能对应一个Master,Master与Slave的对应关系通过指定相同的BrokerName,不同的BrokerId来定义,BrokerId为0表示Master,非0表示Slave。Master也可以部署多个。每个Broker与Name Server集群中的所有节点建立长连接,定时注册Topic信息到所有Name Server。
Producer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master建立长连接,且定时向Master发送心跳。Producer完全无状态,可集群部署。
Consumer与Name Server集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供Topic服务的Master、Slave建立长连接,且定时向Master、Slave发送心跳。Consumer既可以从Master订阅消息,也可以从Slave订阅消息,订阅规则由Broker配置决定。
RocketMQ 逻辑部署结构
如上图所示,RocketMQ的逻辑部署结构有Producer和Consumer两个特点。
Producer Group
用来表示一个发送消息应用,一个Producer Group下包含多个Producer实例,可以是多台机器,也可以是一台机器的多个进程,或者一个进程的多个Producer对象。一个Producer Group可以发送多个Topic消息,Producer Group作用如下:
标识一类Producer
可以通过运维工具查询这个发送消息应用下有多个Producer实例
发送分布式事务消息时,如果Producer中途意外宕机,Broker会主动回调Producer Group内的任意一台机器来确认事务状态。
Consumer Group
用来表示一个消费消息应用,一个Consumer Group下包含多个Consumer实例,可以是多台机器,也可以是多个进程,或者是一个进程的多个Consumer对象。一个Consumer Group下的多个Consumer以均摊方式消费消息,如果设置为广播方式,那么这个Consumer Group下的每个实例都消费全量数据。
RocketMQ 数据存储结构
如上图所示,RocketMQ采取了一种数据与索引分离的存储方法。有效降低文件资源、IO资源,内存资源的损耗。即便是阿里这种海量数据,高并发场景也能够有效降低端到端延迟,并具备较强的横向扩展能力。
来源:阿里中间件团队博客
链接:http://jm.taobao.org/2017/01/12/rocketmq-quick-start-in-10-minutes/
推荐阅读:
如有收获,点个在看,诚挚感谢
以上是关于Rocketmq、kfaka太重,小团队可以选啥MQ?的主要内容,如果未能解决你的问题,请参考以下文章