ARM微处理器有哪几种基本寻址方式
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ARM微处理器有哪几种基本寻址方式相关的知识,希望对你有一定的参考价值。
ARM处理器有9种基本寻址方式:寻址方式是根据指令中给出的地址码字段来实现寻找真实操作数地址的方式。
1.寄存器寻址
操作数的值在寄存器中,指令中的地址码字段给出的是寄存器编号,寄存器的内容是操作数,指令执行时直接取出寄存器值操作。
例如指令:
MOV R1,R2 ;R1←R2
SUB R0,R1,R2 ;R0←R1- R2
2.立即寻址
在立即寻址指令中数据就包含在指令当中,立即寻址指令的操作码字段后面的地址码部分就是操作数本身,取出指令也就取出了可以立即使用的操作数(也称为立即数)。立即数要以“#”为前缀,表示16进制数值时以“0x”表示。
例如指令:
ADD R0,R0,#1 ;R0←R0 + 1
MOV R0,#0xff00 ;R0←0xff00
3.寄存器移位寻址
寄存器移位寻址是ARM指令集特有的寻址方式。第2个寄存器操作数在与第1个操作数结合之前,先进行移位操作。
例如指令:
MOV R0,R2,LSL #3 ;R2的值左移3位,结果放入R0,即R0=R2 * 8
ANDS R1,R1,R2,LSL R3 ;R2的值左移R3位,然后和R1相与操作,结果放入R1
可采用的移位操作如下:
LSL:逻辑左移(Logical Shift Left),寄存器中字的低端空出的位补0。
LSR:逻辑右移(Logical Shift Right),寄存器中字的高端空出的位补0。
ASR:算术右移(Arithmetic Shift Right),移位过程中保持符号位不变,即如果源操作数为正数,则字的高端空出的位补0,否则补1
ROR:循环右移(Rotate Right),由字的低端移出的位填入字的高端空出的位
RRX:带扩展的循环右移(Rotate Right extended by 1 place),操作数右移一位,高端空出的位用原C 标志值填充。
各移位操作过程如图所示。
4.寄存器间接寻址
指令中的地址码给出的是一个通用寄存器编号,所需要的操作数保存在寄存器指定地址的存储单元中,即寄存器为操作数的地址指针,操作数存放在存储器中。
例如指令:
LDR R0,[R1] ;R0←[R1](将R1中的数值作为地址,取出此地址中的数据保存在R0中)
STR R0,[R1] ;[R1] ←R0
5.变址寻址
变址寻址是将基址寄存器的内容与指令中给出的偏移量相加,形成操作数的有效地址,变址寻址用于访问基址附近的存储单元,常用于查表,数组操作,功能部件寄存器访问等。
例如指令:
LDR R2,[R3,#4] ;R2←[R3 + 4](将R3中的数值加4作为地
址,取出此地址的数值保存在R2 中)
STR R1,[R0,#-2] ;[R0-2] ← R1(将R0中的数值减2 作为地址,把R1中的内容保存到此地址位置)
6.多寄存器寻址
采用多寄存器寻址方式,一条指令可以完成多个寄存器值的传送,这种寻址方式用一条指令最多可以完成16个寄存器值的传送。
例如指令:
LDMIA R0,R1,R2,R3,R5 ;
7.堆栈寻址
堆栈是一种数据结构,堆栈是特定顺序进行存取的存储区,操作顺序分为“后进先出”和“先进后出”,堆栈寻址时隐含的,它使用一个专门的寄存器(堆栈指针)指向一块存储区域(堆栈),指针所指向的存储单元就是堆栈的栈顶。存储器生长堆栈可分为两种:
向上生长:向高地址方向生长,称为递增堆栈(Ascending Stack)。
向下生长:向低地址方向生长,称为递减堆栈(Decending Stack)。
堆栈指针指向最后压入的堆栈的有效数据项,称为满堆栈(Full Stack);堆栈指针指向下一个要放入的空位置,称为空堆栈(Empty Stack)。
这样就有四种类型的堆栈工作方式,ARM微处理器支持这四种类型的堆栈工作方式,即:
满递增堆栈:堆栈指针指向最后压入的数据,且由低地址向高地址生成。如指令LDMFA,STMFA 等。
满递减堆栈:堆栈指针指向最后压入的数据,且由高地址向低地址生成。如指令LDMFD,STMFD 等。
空递增堆栈:堆栈指针指向下一个将要放入数据的空位置,且由低地址向高地址生成。如指令LDMEA,STMEA 等。
空递减堆栈:堆栈指针指向下一个将要放入数据的空位置,且由高地址向低地址生成。如指令LDMED,STMED 等。
8.块复制寻址
块复制寻址用于把一块从存储器的某一位置复制到另一位置,是一个多寄存器传送指令。例如指令:
STMIA R0!,R1-R7 ;将R1~R7的数据保存到存储器中,存储器指针在保存第一个值之后增加,增长方向为向上增长。
STMDA R0!,R1-R7 ;将R1~R7的数据保存到存储器中,存储器指针在保存第一个值之后增加,增长方向为向下增长。
9.相对寻址
相对寻址是变址寻址的一种变通,由程序计数器PC提供基准地址,指令中的地址码字段作为偏移量,两者相加后得到的地址即为操作数的有效地址。
例如指令:
BL ROUTE1 ;调用到ROUTE1子程序
BEQ LOOP ;条件跳转到LOOP标号处
LOOP MOV R2,#2
ROUTE1
参考技术AARM处理器有9种基本寻址方式:寻址方式是根据指令中给出的地址码字段来实现寻找真实操作数地址的方式。
寄存器寻址:
操作数的值在寄存器中,指令中的地址码字段给出的是寄存器编号,寄存器的内容是操作数,指令执行时直接取出寄存器值操作。
立即寻址:
在立即寻址指令中数据就包含在指令当中,立即寻址指令的操作码字段后面的地址码部分就是操作数本身,取出指令也就取出了可以立即使用的操作数(也称为立即数)。立即数要以“#”为前缀,表示16进制数值时以“0x”表示。
寄存器移位寻址:
寄存器移位寻址是ARM指令集特有的寻址方式。第2个寄存器操作数在与第1个操作数结合之前,先进行移位操作。
寄存器间接寻址:
指令中的地址码给出的是一个通用寄存器编号,所需要的操作数保存在寄存器指定地址的存储单元中,即寄存器为操作数的地址指针,操作数存放在存储器中。
变址寻址:
变址寻址是将基址寄存器的内容与指令中给出的偏移量相加,形成操作数的有效地址,变址寻址用于访问基址附近的存储单元,常用于查表,数组操作,功能部件寄存器访问等。
多寄存器寻址
采用多寄存器寻址方式,一条指令可以完成多个寄存器值的传送,这种寻址方式用一条指令最多可以完成16个寄存器值的传送。
堆栈寻址:
堆栈是一种数据结构,堆栈是特定顺序进行存取的存储区,操作顺序分为“后进先出”和“先进后出”,堆栈寻址时隐含的,它使用一个专门的寄存器(堆栈指针)指向一块存储区域(堆栈),指针所指向的存储单元就是堆栈的栈顶。存储器生长堆栈可分为两种:
向上生长:向高地址方向生长,称为递增堆栈(Ascending Stack)。
向下生长:向低地址方向生长,称为递减堆栈(Decending Stack)。
堆栈指针指向最后压入的堆栈的有效数据项,称为满堆栈(Full Stack);堆栈指针指向下一个要放入的空位置,称为空堆栈(Empty Stack)。
这样就有四种类型的堆栈工作方式,ARM微处理器支持这四种类型的堆栈工作方式,即:
满递增堆栈:堆栈指针指向最后压入的数据,且由低地址向高地址生成。如指令LDMFA,STMFA 等。
满递减堆栈:堆栈指针指向最后压入的数据,且由高地址向低地址生成。如指令LDMFD,STMFD 等。
空递增堆栈:堆栈指针指向下一个将要放入数据的空位置,且由低地址向高地址生成。如指令LDMEA,STMEA 等。
空递减堆栈:堆栈指针指向下一个将要放入数据的空位置,且由高地址向低地址生成。如指令LDMED,STMED 等。
块复制寻址:
块复制寻址用于把一块从存储器的某一位置复制到另一位置,是一个多寄存器传送指令。
相对寻址:
相对寻址是变址寻址的一种变通,由程序计数器PC提供基准地址,指令中的地址码字段作为偏移量,两者相加后得到的地址即为操作数的有效地址。
这种问题...
数据存储形式有哪几种?
如题咯 谢谢!!
书上说 根据数据的存储形式的不同 所采用的寻址方式也不同 那么 数据的存储方式各有哪几种呢?
【块存储】
典型设备:磁盘阵列,硬盘
块存储主要是将裸磁盘空间整个映射给主机使用的,就是说例如磁盘阵列里面有5块硬盘(为方便说明,假设每个硬盘1G),然后可以通过划逻辑盘、做Raid、或者LVM(逻辑卷)等种种方式逻辑划分出N个逻辑的硬盘。(假设划分完的逻辑盘也是5个,每个也是1G,但是这5个1G的逻辑盘已经于原来的5个物理硬盘意义完全不同了。例如第一个逻辑硬盘A里面,可能第一个200M是来自物理硬盘1,第二个200M是来自物理硬盘2,所以逻辑硬盘A是由多个物理硬盘逻辑虚构出来的硬盘。)
接着块存储会采用映射的方式将这几个逻辑盘映射给主机,主机上面的操作系统会识别到有5块硬盘,但是操作系统是区分不出到底是逻辑还是物理的,它一概就认为只是5块裸的物理硬盘而已,跟直接拿一块物理硬盘挂载到操作系统没有区别的,至少操作系统感知上没有区别。
此种方式下,操作系统还需要对挂载的裸硬盘进行分区、格式化后,才能使用,与平常主机内置硬盘的方式完全无异。
优点:
1、 这种方式的好处当然是因为通过了Raid与LVM等手段,对数据提供了保护。
2、 另外也可以将多块廉价的硬盘组合起来,成为一个大容量的逻辑盘对外提供服务,提高了容量。
3、 写入数据的时候,由于是多块磁盘组合出来的逻辑盘,所以几块磁盘可以并行写入的,提升了读写效率。
4、 很多时候块存储采用SAN架构组网,传输速率以及封装协议的原因,使得传输速度与读写速率得到提升。
缺点:
1、采用SAN架构组网时,需要额外为主机购买光纤通道卡,还要买光纤交换机,造价成本高。
2、主机之间的数据无法共享,在服务器不做集群的情况下,块存储裸盘映射给主机,再格式化使用后,对于主机来说相当于本地盘,那么主机A的本地盘根本不能给主机B去使用,无法共享数据。
3、不利于不同操作系统主机间的数据共享:另外一个原因是因为操作系统使用不同的文件系统,格式化完之后,不同文件系统间的数据是共享不了的。例如一台装了WIN7/XP,文件系统是FAT32/NTFS,而Linux是EXT4,EXT4是无法识别NTFS的文件系统的。就像一只NTFS格式的U盘,插进Linux的笔记本,根本无法识别出来。所以不利于文件共享。
【文件存储】
典型设备:FTP、NFS服务器
为了克服上述文件无法共享的问题,所以有了文件存储。
文件存储也有软硬一体化的设备,但是其实普通拿一台服务器/笔记本,只要装上合适的操作系统与软件,就可以架设FTP与NFS服务了,架上该类服务之后的服务器,就是文件存储的一种了。
主机A可以直接对文件存储进行文件的上传下载,与块存储不同,主机A是不需要再对文件存储进行格式化的,因为文件管理功能已经由文件存储自己搞定了。
优点:
1、造价交低:随便一台机器就可以了,另外普通以太网就可以,根本不需要专用的SAN网络,所以造价低。
2、方便文件共享:例如主机A(WIN7,NTFS文件系统),主机B(Linux,EXT4文件系统),想互拷一部电影,本来不行。加了个主机C(NFS服务器),然后可以先A拷到C,再C拷到B就OK了。(例子比较肤浅,请见谅……)
缺点:
读写速率低,传输速率慢:以太网,上传下载速度较慢,另外所有读写都要1台服务器里面的硬盘来承担,相比起磁盘阵列动不动就几十上百块硬盘同时读写,速率慢了许多。
【对象存储】
典型设备:内置大容量硬盘的分布式服务器
对象存储最常用的方案,就是多台服务器内置大容量硬盘,再装上对象存储软件,然后再额外搞几台服务作为管理节点,安装上对象存储管理软件。管理节点可以管理其他服务器对外提供读写访问功能。
之所以出现了对象存储这种东西,是为了克服块存储与文件存储各自的缺点,发扬它俩各自的优点。简单来说块存储读写快,不利于共享,文件存储读写慢,利于共享。能否弄一个读写快,利 于共享的出来呢。于是就有了对象存储。
首先,一个文件包含了了属性(术语叫metadata,元数据,例如该文件的大小、修改时间、存储路径等)以及内容(以下简称数据)。
以往像FAT32这种文件系统,是直接将一份文件的数据与metadata一起存储的,存储过程先将文件按照文件系统的最小块大小来打散(如4M的文件,假设文件系统要求一个块4K,那么就将文件打散成为1000个小块),再写进硬盘里面,过程中没有区分数据/metadata的。而每个块最后会告知你下一个要读取的块的地址,然后一直这样顺序地按图索骥,最后完成整份文件的所有块的读取。
这种情况下读写速率很慢,因为就算你有100个机械手臂在读写,但是由于你只有读取到第一个块,才能知道下一个块在哪里,其实相当于只能有1个机械手臂在实际工作。
而对象存储则将元数据独立了出来,控制节点叫元数据服务器(服务器+对象存储管理软件),里面主要负责存储对象的属性(主要是对象的数据被打散存放到了那几台分布式服务器中的信息),而其他负责存储数据的分布式服务器叫做OSD,主要负责存储文件的数据部分。当用户访问对象,会先访问元数据服务器,元数据服务器只负责反馈对象存储在哪些OSD,假设反馈文件A存储在B、C、D三台OSD,那么用户就会再次直接访问3台OSD服务器去读取数据。
这时候由于是3台OSD同时对外传输数据,所以传输的速度就加快了。当OSD服务器数量越多,这种读写速度的提升就越大,通过此种方式,实现了读写快的目的。
另一方面,对象存储软件是有专门的文件系统的,所以OSD对外又相当于文件服务器,那么就不存在文件共享方面的困难了,也解决了文件共享方面的问题。
所以对象存储的出现,很好地结合了块存储与文件存储的优点。
最后为什么对象存储兼具块存储与文件存储的好处,还要使用块存储或文件存储呢?
1、有一类应用是需要存储直接裸盘映射的,例如数据库。因为数据库需要存储裸盘映射给自己后,再根据自己的数据库文件系统来对裸盘进行格式化的,所以是不能够采用其他已经被格式化为某种文件系统的存储的。此类应用更适合使用块存储。
2、对象存储的成本比起普通的文件存储还是较高,需要购买专门的对象存储软件以及大容量硬盘。如果对数据量要求不是海量,只是为了做文件共享的时候,直接用文件存储的形式好了,性价比高。
参考技术A在线存储 (Online storage):有时也称为二级存储。这种存储方式提供最好的数据获取便利性,大磁盘阵列是其中最典型的代表之一。这种存储方式的好处是读写非常方便迅捷,缺点是相对较贵并且容易因为误操作或者防病毒软件的误删除而使数据受到损害。
近线存储 (Near-line storage):有时也称为三级存储。比起在线存储,近线存储提供的数据获取便利性相对差一些,但是价格要便宜些。自动磁带库是其中的一个典型代表。近线存储由于相对读取速度相对较慢,主要用于归档较不常用的数据。
脱机存储 (Offline storage):这种存储方式指的是每次在读写数据时,必须人为的将存储介质放入存储系统。脱机存储用于永久或长期保存数据,而又不需要介质当前在线或连接到存储系统上。脱机存储的介质通常可以方便携带或转运,如磁带和移动硬盘。
异站保护 (Off-site vault):为了防止灾难或其他可能影响到整个站点的问题,许多人选择将重要的数据发送到其他站点来作为灾难恢复计划的一部分。这种存储方式保证即使站内数据丢失,其他站点仍有数据副本。异站保护可防止由自然灾害、人为错误或系统崩溃造成的数据丢失。
常用的存储介质为磁盘和磁带。数据存储组织方式因存储介质而异。在磁带上数据仅按顺序文件方式存取;在磁盘上则可按使用要求采用顺序存取或直接存取方式。数据存储方式与数据文件组织密切相关,其关键在于建立记录的逻辑与物理顺序间对应关系,确定存储地址,以提高数据存取速度。本回答被提问者采纳
以上是关于ARM微处理器有哪几种基本寻址方式的主要内容,如果未能解决你的问题,请参考以下文章