2021-06-19 R语言执行单因素方差分析(单因素ANOVA)及多重比较
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2021-06-19 R语言执行单因素方差分析(单因素ANOVA)及多重比较相关的知识,希望对你有一定的参考价值。
参考技术A 与T检验相似,ANOVA同样要求数据服从正态分布;此外,ANOVA还建立在各组方差相等的基础上。因此,在执行单因素ANOVA之前,我们首先应当对数据进行正态性分布验证,以及方差齐性检验。R语言单因素、多因素方差分析ANOVA analysis of variance
参考技术A@[toc]
假设检验的前提是要满足正态分布和方差齐性
组内平方和SSE:同一组内的数据误差平方和
组间平方和SSA:不同组之间的数据误差平方和
一个分类型自变量
例如四个班级学生的语文成绩,班级是分类型自变量,四个班级是自变量的四个水平
测试班级对成绩的影响
因为p<0.001,说明班级对成绩的影响非常显著
图中跨越0分界线的班级对,有较大可能落在0上,也就是说两个班级之间没有明显差异。其他班级说明都有明显差异。
同一班级在大学三年的三次测试
p<0.001,说明学生成绩在大学三年中有显著差异。球形检验的p-value大于0.05,所以可以认为方差相等。
Mauchly\'s Test for Sphericity :适用于重复测量时检验不同测量之间的差值的方差是否相等,用于三次以及三次之上。
Sphericity Corrections :球形矫正,当方差不相等时进行矫正,矫正方法有the Greenhouse-Geisser (1959), the Huynh-Feldt (1976), 简称GG和HF。
两个分类型自变量
例如探究 词汇量 和 话题熟悉度 对学生作文成绩的影响
词汇量和话题熟悉度两个变量对成绩的影响都很显著,交互项对成绩影响不显著。
探究班级和测试次数对学生成绩的影响
班级和测试次数在原始检验中都很显著,然后交叉项不显著。
但是在球形检验中,推翻了方差齐性的假设,所以tests需要使用球形矫正之后的p值,classes不用。
矫正之前tests的p-value = 3.482406e-04,矫正之后的p-value = 0.001左右。
以上是关于2021-06-19 R语言执行单因素方差分析(单因素ANOVA)及多重比较的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用aov函数进行单因素协方差分析(One-way ANCOVA)单因素协方差分析(ANCOVA)扩展了单因素方差分析,包括一个或多个协变量(covariates)