Elasticsearch基础

Posted Amelie11

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Elasticsearch基础相关的知识,希望对你有一定的参考价值。

介绍

什么是全文搜索引擎

众所周知,常用的搜索网站有:百度、谷歌等。那么要对数据进行搜索,是不是需要先了解数据的分类

  • 数据的分类

结构化数据:指具有固定格式或有限长度的数据,如数据库、元数据等

对于结构化的数据,一般是通过关系型数据库(mysql、oracle等)进行存储和搜索,也可以建立索引。通过b-tree等数据结构快速搜索。

非结构化数据:全文数据,指不定长度或无固定格式的数据,如文档等

对于非结构化的数据,也就是全文数据:顺序扫描法、全文搜索法

  • 顺序扫描

按照顺序扫描的⽅式查找特定的关键字。⽐如在关于海贼王的帖子中,找出"路飞"这个名字在哪些段落出现过。那你肯定需要从头到尾把⽂章阅读⼀遍,然后标记出关键字在哪些地⽅出现过。这种⽅法想想都是最低效的。

  • 全文搜索

对全文数据进⾏顺序扫描很慢,那怎么进行优化?把我们的⾮结构化数据想办法弄得有⼀定结构不就⾏了吗?将⾮结构化数据中的⼀部分信息提取出来,重新组织,使其变得有⼀定结构,然后对这些有⼀定结构的数据进⾏搜索,从⽽达到搜索相对较快的⽬的。这种⽅式就构成了全⽂搜索的基本思路。这部分从⾮结构化数据中提取出的然后重新组织的信息,我们称为索引

  • 什么是全文搜索引擎

全文搜索引擎是目前广泛应用的主流搜索引擎。它的工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。

常见的搜索引擎

Lucene,Solr,Elasticsearch

  • Lucene

Lucene是⼀个Java全⽂搜索引擎,只是⼀个框架,⼀个代码库和API,要充分利⽤它的功能,需要使⽤java,并且在程序中集成,这样可以很容易地⽤于向应⽤程序添加搜索功能。

通过简单的API提供强⼤的功能 :

可扩展的⾼性能索引

强⼤,准确,⾼效的搜索算法

跨平台解决⽅案

  • Solr

Solr是⼀个基于Lucene的Java库构建的开源搜索平台。它以⽤户友好的⽅式提供Apache Lucene的搜索功能。它是⼀个成熟的产品,拥有强⼤⽽⼴泛的⽤户社区。它能提供分布式索引,复制,负载均衡查询以及⾃动故障转移和恢复。如果它被正确部署然后管理得好,它就能够成为⼀个⾼度可靠,可扩展且容错的搜索引擎

强⼤的功能

全⽂搜索

突出

分⾯搜索

实时索引

动态群集

数据库集成

NoSQL功能和丰富的⽂档处理

  • Elasticsearch

Elasticsearch是⼀个开源,是⼀个基于Apache Lucene库构建的Restful搜索引擎.Elasticsearch是在Solr之后⼏年推出的。它提供了⼀个分布式,多租户能⼒的全⽂搜索引擎,具有HTTP Web界⾯(REST)和⽆架构JSON⽂档。Elasticsearch的官⽅客户端库提供Java,Groovy,php,Ruby,Perl,Python,.NET和javascript

主要功能

分布式搜索

数据分析

分组和聚合

应⽤场景

维基百科

电商⽹站

⽇志数据分析

为什么不用mysql做搜索引擎

我们的所有数据都是放在数据库⾥的,⽽且 Mysql,Oracle,SQL Server 等数据库也能提供查询搜索功能,直接通过数据库查询不就可以了?确实,我们⼤部分的查询都能通过数据库查询,如果查询效率低,还可以通过新建数据库索引,优化SQL等⽅式提升效率,也可以通过引⼊缓存⽐如redis,memcache来加快数据的返回速度。如果数据量更⼤,还可以通过分库分表来分担查询压⼒。那为什么还要全⽂搜索引擎呢

数据类型

全⽂索引搜索很好的⽀持⾮结构化数据的搜索,可以更好地快速搜索⼤量存在的任何单词⾮结构化⽂本。例如 Google,百度类的⽹站搜索,它们都是根据⽹⻚中的关键字⽣成索引,我们在搜索的时候输⼊关键字,它们会将该关键字即索引匹配到的所有⽹⻚返回;还有常⻅的项⽬中应⽤⽇志的搜索等等。对于这些⾮结构化的数据⽂本,关系型数据库搜索不能很好的⽀持。

搜索性能

如果使⽤mysql做搜索,⽐如有个人物表character,有字段名称name,要查找出

名称以“蒙奇”开头的人物,和含有蒙奇的人物。数据量达到千万级别的时候怎么办?

--该查询还好
select * from charact where name like '蒙奇%';

--无法走索引
select * from charact where name like '%蒙奇%';
  • 灵活的索引

如果我们想查出名字叫蒙奇D路飞的人物,但是⽤户输⼊了蒙奇,我们想提示他⼀些关键字

  • 索引的维护

⼀般传统数据库,全⽂搜索都实现的很鸡肋,因为⼀般也没⼈⽤数据库存⻓⽂本字段,因为进⾏全⽂搜索的时候需要扫描整个表,如果数据量⼤的话即使对SQL的语法进⾏优化,也是效果甚微。即使建⽴了索引,但是维护起来也很麻烦,对于 insert 和 update 操作都会重新 构建索引。

  • 适合全⽂索引引擎的场景

搜索的数据对象是⼤量的⾮结构化的⽂本数据。

⽂本数据量达到数⼗万或数百万级别,甚⾄更多。

⽀持⼤量基于交互式⽂本的查询。

需求⾮常灵活的全⽂搜索查询。

读多写少。

快速搭建elasticsearch

可以通过docker进行快速搭建,docker-compose.xml如下,

version: '3'
services:
  elasticsearch:
    image: elasticsearch:7.7.0
    container_name: amelie-elasticsearch
    environment:
      ES_JAVA_OPTS: -Djava.net.preferIPv4Stack=true -Xms512m -Xmx512m
      transport.host: 0.0.0.0
      discovery.type: single-node
      bootstrap.memory_lock: "true"
      discovery.zen.minimum_master_nodes: 1
      discovery.zen.ping.unicast.hosts: elasticsearch
    volumes:
      - elasticsearch-volume:/usr/share/elasticsearch/data
    ports:
      - "9200:9200"
      - "9300:9300"
  kibana:
    image: kibana:7.7.0
    container_name: amelie-kibana
    environment:
      ELASTICSEARCH_URL: http://elasticsearch:9200
    links:
      - elasticsearch:elasticsearch
    ports:
      - "5602:5601"
    depends_on:
      - elasticsearch
      
volumes:
  elasticsearch-volume:

启动:docker-compose up -d

访问http://localhost:5602即可看到kibana的界面

访问http://localhost:9200/可看到elastic相关信息

基础使用

elastic search核⼼概念

Elasticsearch

关系型数据库

索引(index)

数据库

类型(type):

注意:

ES 5.x中⼀个index可以有多种type。

ES 6.x中⼀个index只能有⼀种type。

ES 7.x以后已经移除type这个概念

表:如用户表、角色表

映射(mapping),定义了每个字段的类型等信息

表结构

⽂档(document)

⼀⾏记录

字段(field)

字段

  • 集群(cluster)

集群由⼀个或多个节点组成,⼀个集群有⼀个默认名称"elasticsearch"。

  • 节点(node)

集群的节点,⼀台机器或者⼀个进程

  • 分⽚和副本(shard)

副本是分⽚的副本。分⽚有主分⽚(primary Shard)和副本分⽚(replica Shard)。⼀个Index数据在物理上被分布在多个主分⽚中,每个主分⽚只存放部分数据。每个主分⽚可以有多个副本,叫副本分⽚,是主分⽚的复制。

快速入门

获取elasticsearch状态

GET http://localhost:9200


  "name" : "998d3cf2e56e",
  "cluster_name" : "docker-cluster",
  "cluster_uuid" : "0nXilfyMQsGENqRBsIyA3g",
  "version" : 
    "number" : "7.7.0",
    "build_flavor" : "default",
    "build_type" : "docker",
    "build_hash" : "81a1e9eda8e6183f5237786246f6dced26a10eaf",
    "build_date" : "2020-05-12T02:01:37.602180Z",
    "build_snapshot" : false,
    "lucene_version" : "8.5.1",
    "minimum_wire_compatibility_version" : "6.8.0",
    "minimum_index_compatibility_version" : "6.0.0-beta1"
  ,
  "tagline" : "You Know, for Search"

新增文档

PUT localhost:9200/user/_doc/1

删除文档

DELETE localhost:9200/user/_doc/1

索引的使用

方法

URL

结果

新增

PUT localhost:9200/onepiece


    "acknowledged": true,
    "shards_acknowledged": true,
    "index": "onepiece"

获取

GET localhost:9200/onepiece


    "onepiece": 
        "aliases": ,
        "mappings": ,
        "settings": 
            "index": 
                "creation_date": "1674566184795",
                "number_of_shards": "5",
                "number_of_replicas": "1",
                "uuid": "KXiiXlCgS8ihUUqjghpb5Q",
                "version": 
                    "created": "6081199"
                ,
                "provided_name": "onepiece"
            
        
    

删除

DELETE localhost:9200/onepiece


    "acknowledged": true

批量获取

GET localhost:9200/onepiece,user


    "onepiece": 
        "aliases": ,
        "mappings": ,
        "settings": 
            "index": 
                "creation_date": "1674566591562",
                "number_of_shards": "5",
                "number_of_replicas": "1",
                "uuid": "dLrYdXpISLGTJJ82dfOA-A",
                "version": 
                    "created": "6081199"
                ,
                "provided_name": "onepiece"
            
        
    ,
    "user": 
        "aliases": ,
        "mappings": 
            "_doc": 
                "properties": 
                    "age": 
                        "type": "text",
                        "fields": 
                            "keyword": 
                                "type": "keyword",
                                "ignore_above": 256
                            
                        
                    ,
                    "username": 
                        "type": "text",
                        "fields": 
                            "keyword": 
                                "type": "keyword",
                                "ignore_above": 256
                            
                        
                    
                
            
        ,
        "settings": 
            "index": 
                "creation_date": "1674564715527",
                "number_of_shards": "5",
                "number_of_replicas": "1",
                "uuid": "hYr7yo0KRDqqlrcoqHmKEA",
                "version": 
                    "created": "6081199"
                ,
                "provided_name": "user"
            
        
    

获取所有

GET localhost:9200/_all

GET localhost:9200/_cat/indices?v

第二种方式返回:

关闭

POST localhost:9200/onepiece/_close


    "acknowledged": true

关闭索引后,就无法再创建文档,若创建则会报错:


    "error": 
        "root_cause": [
            
                "type": "index_closed_exception",
                "reason": "closed",
                "index_uuid": "dLrYdXpISLGTJJ82dfOA-A",
                "index": "onepiece"
            
        ],
        "type": "index_closed_exception",
        "reason": "closed",
        "index_uuid": "dLrYdXpISLGTJJ82dfOA-A",
        "index": "onepiece"
    ,
    "status": 400

打开

POST localhost:9200/onepiece/_open


    "acknowledged": true,
    "shards_acknowledged": true

映射的使用

操作

URL

数据

结果

新增

post

localhost:9200/onepiece/_mapping


 "properties": 
 "name": 
 "type": "keyword"

 ,
 "role": 
 "type": "text"

 ,
 "skill": 
 "type": "text"

 
 

    "acknowledged": true

获取

get

localhost:9200/_mapping

修改

put

localhost:9200/onepiece/_mapping

文档的使用

新增文档

操作

URL

数据

结果

新增

PUT

localhost:9200/onepiece/_doc/1

必须指定id


    "name":"路飞",
    "role":"船长",
    "skill":"橡胶巨人手枪"

    "_index": "onepiece",
    "_type": "_doc",
    "_id": "1",
    "_version": 1,
    "result": "created",
    "_shards": 
        "total": 2,
        "successful": 1,
        "failed": 0
    ,
    "_seq_no": 0,
    "_primary_term": 2

新增2

POST

localhost:9200/nba/_doc

不指定id


    "name":"山治",
    "role":"厨师",
    "skill":"旋转踢"

    "_index": "onepiece",
    "_type": "_doc",
    "_id": "EFsY5IUBhzEzAQrS8ccK",
    "_version": 1,
    "result": "created",
    "_shards": 
        "total": 2,
        "successful": 1,
        "failed": 0
    ,
    "_seq_no": 1,
    "_primary_term": 2

查看

GET localhost:9200/onepiece/_doc/1


    "_index": "onepiece",
    "_type": "_doc",
    "_id": "1",
    "_version": 1,
    "_seq_no": 0,
    "_primary_term": 2,
    "found": true,
    "_source": 
        "name": "路飞",
        "role": "船长",
        "skill": "橡胶巨人手枪"
    

查看多个

POST

localhost:9200/_mget



 "docs" : [
 
 "_index" : "user",
 "_type" : "_doc",
 "_id" : "1"

 ,
 
 "_index" : "onepiece",
 "_type" : "_doc",
 "_id" : "1"

 
 ]

    "docs": [
        
            "_index": "user",
            "_type": "_doc",
            "_id": "1",
            "found": false
        ,
        
            "_index": "onepiece",
            "_type": "_doc",
            "_id": "1",
            "_version": 2,
            "_seq_no": 2,
            "_primary_term": 2,
            "found": true,
            "_source": 
                "name": "路飞",
                "role": "船长",
                "skill": "橡胶巨人手枪",
                "age": 19
            
        
    ]

查看多个指定索引

POST

localhost:9200/onepiece/_mget



 "docs" : [
 
 "_type" : "_doc",
 "_id" : "1"
 ,
 
 "_type" : "_doc",
 "_id" : "2"
 
 ]

    "docs": [
        
            "_index": "onepiece",
            "_type": "_doc",
            "_id": "1",
            "_version": 2,
            "_seq_no": 2,
            "_primary_term": 2,
            "found": true,
            "_source": 
                "name": "路飞",
                "role": "船长",
                "skill": "橡胶巨人手枪",
                "age": 19
            
        ,
        
            "_index": "onepiece",
            "_type": "_doc",
            "_id": "2",
            "found": false
        
    ]

修改

POST

localhost:9200/onepiece/_doc/1


    "name":"路飞",
    "role":"船长",
    "skill":"橡胶巨人手枪",
    "age":19
    

    "_index": "onepiece",
    "_type": "_doc",
    "_id": "1",
    "_version": 2,
    "result": "updated",
    "_shards": 
        "total": 2,
        "successful": 1,
        "failed": 0
    ,
    "_seq_no": 2,
    "_primary_term": 2

删除

DELETE

localhost:9200/onepiece/_doc/1

搜索的简单使用

term(词条)查询和full text(全⽂)查询

词条查询:词条查询不会分析查询条件,只有当词条和查询字符串完全匹配时,才匹配搜 索。

全⽂查询:ElasticSearch引擎会先分析查询字符串,将其拆分成多个分词,只要已分析的字段中包含词条的任意⼀个,或全部包含,就匹配查询条件,返回该⽂档;如果不包含任意⼀个分词,表示没有任何⽂档匹配查询条件

  • 单条term

关键字查询,精确查询,mapping中type为keyword

post localhost:9200/onepiece/_search


 "query":
 "term":
 "name":"路飞"
 
 
  • 多条term

post localhost:9200/onepiece/_search


 "query":
 "terms":
 "name":["路飞","索隆"]

 
 
  • match_all

post localhost:9200/onepiece/_search


 "query": 
 "match_all": 
 ,
 "from": 0,
 "size": 10

  • match

post localhost:9200/onepiece/_search


 "query": 
 "match": 
     "role": "船小长" 
     
 

会进行分词: 船、小、长,发现有2个在文档中
结果:

    "took": 1,
    "timed_out": false,
    "_shards": 
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    ,
    "hits": 
        "total": 
            "value": 1,
            "relation": "eq"
        ,
        "max_score": 2.0834165,
        "hits": [
            
                "_index": "onepiece",
                "_type": "_doc",
                "_id": "1",
                "_score": 2.0834165,
                "_source": 
                    "name": "路飞",
                    "role": "船长",
                    "skill": "橡胶巨人手枪"
                
            
        ]
    
  • multi_match

多字段匹配

post localhost:9200/onepiece/_search


 "query": 
 "multi_match": 
 "query":"船长",
 "fields":["name","role"]
 
 
  • match_phrase

类似词条查询,精确

post localhost:9200/onepiece/_search


 "query": 
 "match_phrase": 
    "role":"厨师"
    
 
  • match_phrase_prefix

post localhost:9200/onepiece/_search


 "query": 
 "match_phrase_prefix": 
     "skill":"三"
     
 

#结果

    "took": 3,
    "timed_out": false,
    "_shards": 
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    ,
    "hits": 
        "total": 
            "value": 1,
            "relation": "eq"
        ,
        "max_score": 1.0925692,
        "hits": [
            
                "_index": "onepiece",
                "_type": "_doc",
                "_id": "2",
                "_score": 1.0925692,
                "_source": 
                    "name": "索隆",
                    "role": "战斗员",
                    "skill": "三刀流"
                
            
        ]
    

分词器

什么是分词器

将⽤户输⼊的⼀段⽂本,按照⼀定逻辑,分析成多个词语的⼀种⼯具

常⽤的内置分词器

standard analyzer

标准分析器:默认分词器,如果未指定,则使用该分词器

POST localhost:9200/_analyze


    "analyzer": "standard",    
    "text":"1-Piece that is so much fun that I never want to miss a chapter or episode"


结果:

    "tokens": [
        
            "token": "1",
            "start_offset": 0,
            "end_offset": 1,
            "type": "<NUM>",
            "position": 0
        ,
        
            "token": "piece",
            "start_offset": 2,
            "end_offset": 7,
            "type": "<ALPHANUM>",
            "position": 1
        ,
        
            "token": "that",
            "start_offset": 8,
            "end_offset": 12,
            "type": "<ALPHANUM>",
            "position": 2
        ,
        
            "token": "is",
            "start_offset": 13,
            "end_offset": 15,
            "type": "<ALPHANUM>",
            "position": 3
        ,
        
            "token": "so",
            "start_offset": 16,
            "end_offset": 18,
            "type": "<ALPHANUM>",
            "position": 4
        ,
        
            "token": "much",
            "start_offset": 19,
            "end_offset": 23,
            "type": "<ALPHANUM>",
            "position": 5
        ,
        
            "token": "fun",
            "start_offset": 24,
            "end_offset": 27,
            "type": "<ALPHANUM>",
            "position": 6
        ,
        
            "token": "that",
            "start_offset": 28,
            "end_offset": 32,
            "type": "<ALPHANUM>",
            "position": 7
        ,
        
            "token": "i",
            "start_offset": 33,
            "end_offset": 34,
            "type": "<ALPHANUM>",
            "position": 8
        ,
        
            "token": "never",
            "start_offset": 35,
            "end_offset": 40,
            "type": "<ALPHANUM>",
            "position": 9
        ,
        
            "token": "want",
            "start_offset": 41,
            "end_offset": 45,
            "type": "<ALPHANUM>",
            "position": 10
        ,
        
            "token": "to",
            "start_offset": 46,
            "end_offset": 48,
            "type": "<ALPHANUM>",
            "position": 11
        ,
        
            "token": "miss",
            "start_offset": 49,
            "end_offset": 53,
            "type": "<ALPHANUM>",
            "position": 12
        ,
        
            "token": "a",
            "start_offset": 54,
            "end_offset": 55,
            "type": "<ALPHANUM>",
            "position": 13
        ,
        
            "token": "chapter",
            "start_offset": 56,
            "end_offset": 63,
            "type": "<ALPHANUM>",
            "position": 14
        ,
        
            "token": "or",
            "start_offset": 64,
            "end_offset": 66,
            "type": "<ALPHANUM>",
            "position": 15
        ,
        
            "token": "episode",
            "start_offset": 67,
            "end_offset": 74,
            "type": "<ALPHANUM>",
            "position": 16
        
    ]

simple analyzer

simple 分析器当它遇到只要不是字⺟的字符,就将⽂本解析成term,⽽且所有的term都是⼩写的。

POST localhost:9200/_analyze


    "analyzer": "simple",    
    "text":"1-Piece that is so much fun that I never want to miss a chapter or episode!"

与上面的区别是数字没了

    "tokens": [
        
            "token": "piece",
            "start_offset": 2,
            "end_offset": 7,
            "type": "word",
            "position": 0
        ,
        
            "token": "that",
            "start_offset": 8,
            "end_offset": 12,
            "type": "word",
            "position": 1
        ,
        
            "token": "is",
            "start_offset": 13,
            "end_offset": 15,
            "type": "word",
            "position": 2
        ,
        
            "token": "so",
            "start_offset": 16,
            "end_offset": 18,
            "type": "word",
            "position": 3
        ,
        
            "token": "much",
            "start_offset": 19,
            "end_offset": 23,
            "type": "word",
            "position": 4
        ,
        
            "token": "fun",
            "start_offset": 24,
            "end_offset": 27,
            "type": "word",
            "position": 5
        
    ]

whitespace analyze

whitespace 分析器,当它遇到空⽩字符时,就将⽂本解析成term,数字、大小写、标点符号都不会做处理

POST localhost:9200/_analyze


    "analyzer": "whitespace",    
    "text":"1-Piece that is so much Fun !"


结果:

    "tokens": [
        
            "token": "1-Piece",
            "start_offset": 0,
            "end_offset": 7,
            "type": "word",
            "position": 0
        ,
        
            "token": "that",
            "start_offset": 8,
            "end_offset": 12,
            "type": "word",
            "position": 1
        ,
        
            "token": "is",
            "start_offset": 13,
            "end_offset": 15,
            "type": "word",
            "position": 2
        ,
        
            "token": "so",
            "start_offset": 16,
            "end_offset": 18,
            "type": "word",
            "position": 3
        ,
        
            "token": "much",
            "start_offset": 19,
            "end_offset": 23,
            "type": "word",
            "position": 4
        ,
        
            "token": "Fun",
            "start_offset": 24,
            "end_offset": 27,
            "type": "word",
            "position": 5
        ,
        
            "token": "!",
            "start_offset": 28,
            "end_offset": 29,
            "type": "word",
            "position": 6
        
    ]

stop analyzer

stop 分析器 和 simple 分析器很像,唯⼀不同的是,stop 分析器增加了对删除停⽌词的⽀持,默认使⽤了english停⽌词。stopwords 预定义的停⽌词列表,⽐如 (the,a,an,this,of,at)等


    "analyzer": "stop",    
    "text":"1-Piece that is so much Fun !"


    "tokens": [
        
            "token": "piece",
            "start_offset": 2,
            "end_offset": 7,
            "type": "word",
            "position": 0
        ,
        
            "token": "so",
            "start_offset": 16,
            "end_offset": 18,
            "type": "word",
            "position": 3
        ,
        
            "token": "much",
            "start_offset": 19,
            "end_offset": 23,
            "type": "word",
            "position": 4
        ,
        
            "token": "fun",
            "start_offset": 24,
            "end_offset": 27,
            "type": "word",
            "position": 5
        
    ]

language analyzer

特定的语⾔的分词器,⽐如说,english,英语分词器),内置语⾔:arabic, armenian,basque, bengali, brazilian, bulgarian, catalan, cjk, czech, danish, dutch, english, finnish,french, galician, german, greek, hindi, hungarian, indonesian, irish, italian, latvian,lithuanian, norwegian, persian, portuguese, romanian, russian, sorani, spanish,swedish, turkish,


    "analyzer": "english",    
    "text":"1-Piece that is so much Fun !"


    "tokens": [
        
            "token": "1",
            "start_offset": 0,
            "end_offset": 1,
            "type": "<NUM>",
            "position": 0
        ,
        
            "token": "piec",
            "start_offset": 2,
            "end_offset": 7,
            "type": "<ALPHANUM>",
            "position": 1
        ,
        
            "token": "so",
            "start_offset": 16,
            "end_offset": 18,
            "type": "<ALPHANUM>",
            "position": 4
        ,
        
            "token": "much",
            "start_offset": 19,
            "end_offset": 23,
            "type": "<ALPHANUM>",
            "position": 5
        ,
        
            "token": "fun",
            "start_offset": 24,
            "end_offset": 27,
            "type": "<ALPHANUM>",
            "position": 6
        
    ]

pattern analyzer

⽤正则表达式来将⽂本分割成terms,默认的正则表达式是\\W+(⾮单词字符)


    "analyzer": "pattern",    
    "text":"1-Piece that is so much Fun !"


    "tokens": [
        
            "token": "1",
            "start_offset": 0,
            "end_offset": 1,
            "type": "word",
            "position": 0
        ,
        
            "token": "piece",
            "start_offset": 2,
            "end_offset": 7,
            "type": "word",
            "position": 1
        ,
        
            "token": "that",
            "start_offset": 8,
            "end_offset": 12,
            "type": "word",
            "position": 2
        ,
        
            "token": "is",
            "start_offset": 13,
            "end_offset": 15,
            "type": "word",
            "position": 3
        ,
        
            "token": "so",
            "start_offset": 16,
            "end_offset": 18,
            "type": "word",
            "position": 4
        ,
        
            "token": "much",
            "start_offset": 19,
            "end_offset": 23,
            "type": "word",
            "position": 5
        ,
        
            "token": "fun",
            "start_offset": 24,
            "end_offset": 27,
            "type": "word",
            "position": 6
        
    ]

分词器的使用

1、新建一个索引

PUT localhost:9200/test

   
    "settings":         
        "analysis": 
            "analyzer": 
                "my_analyzer": 
                    "type": "whitespace"
                
            
        
    ,
    "mappings": 
        "properties":  
           "name": 
                "type": "keyword"
            ,
            "role": 
                "type": "text"
            ,
            "skill": 
                "type": "text"
            ,
            "desc": 
                "type": "text",
                "analyzer": "my_analyzer"
            
        
    

2、新建文档

PUT localhost:9200/test/_doc/1


    "name":"路飞",
    "role":"船长",
    "skill":"橡胶巨人手枪",
    "desc":"Luffy is funny and crazy!"

3、查找

POST localhost:9200/test/_search


 "query": 
 "match": 
     "desc": "crazy" 
     
 

未能找到结果

 "query": 
 "match": 
     "desc": "crazy!" 
     
 

即能找到
因为desc用的是whitespace分词器,crazy!会被定义成一个词条

中文分词器

smartCN: ⼀个简单的中⽂或中英⽂混合⽂本的分词

IK:更智能更友好的中⽂分词器

在docker中如何使用大家可以自行查阅

以上是关于Elasticsearch基础的主要内容,如果未能解决你的问题,请参考以下文章

Elasticsearch在Elasticsearch中查询Term Vectors词条向量信息

ElasticSearch 在Java中的各种实现

Elasticsearch搜索之cross_fields分析

elasticSearch精确索引和全文索引

(06)ElasticSearch 分词器介绍及安装中文分词器

ElasticSearch-常用搜索