sklearn.metrics.roc_curve解析

Posted Tina姐

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sklearn.metrics.roc_curve解析相关的知识,希望对你有一定的参考价值。

官方网址:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

首先认识单词:metrics:  ['mɛtrɪks] : 度量‘指标

                        curve : [kɝv]  :  曲线

这个方法主要用来计算ROC曲线面积的;

sklearn.metrics.roc_curve(y_truey_scorepos_label=Nonesample_weight=Nonedrop_intermediate=True)

Parameters

y_true : 数组,shape = [样本数]           

在范围0,1或-1,1中真正的二进制标签。如果标签不是二进制的,则应该显式地给出pos_label

y_score : 数组, shape = [样本数]            

目标得分,可以是积极类的概率估计,信心值,或者是决定的非阈值度量(在某些分类器上由“decision_function”返回)。

pos_label:int or str, 标签被认为是积极的,其他的被认为是消极的。

sample_weight: 顾名思义,样本的权重,可选择的

drop_intermediate:  boolean, optional (default=True)                

 是否放弃一些不出现在绘制的ROC曲线上的次优阈值。这有助于创建更轻的ROC曲线

Returns : 

fpr : array, shape = [>2]                增加假阳性率,例如,i是预测的假阳性率,得分>=临界值[i]

tpr : array, shape = [>2]                增加真阳性率,例如,i是预测的真阳性率,得分>=临界值[i]。  

thresholds : array, shape = [n_thresholds]            

减少了用于计算fpr和tpr的决策函数的阈值。阈值[0]表示没有被预测的实例,并且被任意设置为max(y_score) + 1

要弄明白ROC的概念可以参考 :https://www.deeplearn.me/1522.html

 

介绍ROC曲线的两个重要指标:

真阳性率 = true positive rate = TPR = TP/ (TP + FN)

可以这样理解:真阳性率就是在标准的阳性(标准的阳性就等于真阳性加假阴性=TP + FN)中,同时被检测为阳性的概率,有点绕,自行理解。

假阳性率 = false positive rate = FPR = FP / (FP+TN)

可以这样理解:假阳性就是在标准的阴性(标准的阴性就等于假阳性真阴性=FP + TN)中,被检测为阳性的概率。很好理解的,本来是阴性,检测成了阳性的概率就是假阳性率呗。

 

ROC曲线就由这两个值绘制而成。接下来进入sklearn.metrics.roc_curve实战,找遍了网络也没找到像我一样解释这么清楚的。

import numpy as np
from sklearn import metrics
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)

y 就是标准值,scores 是每个预测值对应的阳性概率,比如0.1就是指第一个数预测为阳性的概率为0.1,很显然,y 和 socres应该有相同多的元素,都等于样本数。pos_label=2 是指在y中标签为2的是标准阳性标签,其余值是阴性。

所以在标准值y中,阳性有2个,后两个;阴性有2个,前两个。

接下来选取一个阈值计算TPR/FPR,阈值的选取规则是在scores值中从大到小的以此选取,于是第一个选取的阈值是0.8

scores中大于阈值的就是预测为阳性,小于的预测为阴性。所以预测的值设为y_=(0,0,0,1),0代表预测为阴性,1代表预测为阳性。可以看出,真阴性都被预测为阴性,真阳性有一个预测为假阴性了。

FPR = FP / (FP+TN) = 0 / 0 + 2 = 0

TPR = TP/ (TP + FN) = 1 / 1 + 1 = 0.5

thresholds = 0.8

我们验证一下结果

print(fpr[0],tpr[0],thresholds[0])

 

同代码结果一致,其余的就不演示了,剩下的阈值一次等于 0.4  0.35  0.1  自行验证。

 

最后结果等于

print(fpr,'\\n',tpr,'\\n',thresholds)

 

全部代码

 

import numpy as np
from sklearn import metrics
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
print(fpr,'\\n',tpr,'\\n',thresholds)

坚持已实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。只有实践才能成长的更快,关注我们,一起成长进步~

 

以上是关于sklearn.metrics.roc_curve解析的主要内容,如果未能解决你的问题,请参考以下文章

sklearn.metrics.roc_curve解析

sklearn.metrics.roc_curve用法

roc_curve()的用法及用途

roc_curve()的用法及用途