elasticsearch学习:es客户端RestHighLevelClient
Posted 炎升
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了elasticsearch学习:es客户端RestHighLevelClient相关的知识,希望对你有一定的参考价值。
本文主要是对 elasticsearch-rest-high-level-client 是学习总结。
1、es端口:
默认情况下,ElasticSearch使用两个端口来监听外部TCP流量。
- 9200端口:用于所有通过HTTP协议进行的API调用。包括搜索、聚合、监控、以及其他任何使用HTTP协议的请求。所有的客户端库都会使用该端口与ElasticSearch进行交互。
- 9300端口:是一个自定义的二进制协议,用于集群中各节点之间的通信。用于诸如集群变更、主节点选举、节点加入/离开、分片分配等事项。
以往,9300端口也被用于客户端库的连接,然而这种类型的交互在我们的官方客户端已被废弃,其他地方也不支持。
2、es的java客户端
客户端 | 优点 | 缺点 | 说明 |
Java Low Level Rest Client | 与ES版本之间没有关系,适用于作为所有版本ES的客户端 | ||
Java High Level Rest Client | 使用最多 | 使用需与ES版本保持一致 | 基于Low Level Rest Client,它提供了更多的接口。注意:7.15版本之后将被弃用 |
TransportClient | 使用Transport 接口进行通信,能够使用ES集群中的一些特性,性能最好 | JAR包版本需与ES集群版本一致,ES集群升级,客户端也跟着升级到相同版本 | 过时产品,7版本之后不再支持 |
Elasticsearch Java API Client | 最新的es客户端 | 文档少 |
详细的elasticsearch java客户端发展史详见:https://blog.csdn.net/cloudbigdata/article/details/126296206
3、RestHighLevelClient介绍
JavaREST客户端有两种模式:
- Java Low Level REST Client:ES官方的低级客户端。低级别的客户端通过http与Elasticearch集群通信。
- Java High Level REST Client:ES官方的高级客户端。基于上面的低级客户端,也是通过HTTP与ES集群进行通信。它提供了更多的接口。
注意事项:
客户端(Client) Jar包的版本尽量不要大于Elasticsearch本体的版本,否则可能出现客户端中使用的某些API在Elasticsearch中不支持。
4、springboot集成RestHighLevelClient
下面介绍下 SpringBoot 如何通过 elasticsearch-rest-high-level-client 工具操作ElasticSearch。当然也可以通过spring-data-elasticsearch来操作ElasticSearch,而本文仅是 elasticsearch-rest-high-level-client 的案例介绍。
这里需要说一下,能使用RestHighLevelClient尽量使用它,为什么不推荐使用 Spring 家族封装的 spring-data-elasticsearch。主要原因是灵活性和更新速度,Spring 将 ElasticSearch 过度封装,让开发者很难跟 ES 的 DSL 查询语句进行关联。再者就是更新速度,ES 的更新速度是非常快,但是 spring-data-elasticsearch 更新速度比较缓慢。并且spring-data-elasticsearch在Elasticsearch6.x和7.x版本上的Java API差距很大,如果升级版本需要花点时间来了解。spring-data-elasticsearch的底层其实也是基于elasticsearch-rest-high-level-client的api。
4.1、maven依赖
<!--引入es-high-level-client相关依赖 start-->
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>6.8.2</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client</artifactId>
<version>6.8.2</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>6.8.2</version>
</dependency>
<!--引入es-high-level-client相关依赖 end-->
<!--加入json解析 start-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.28</version>
</dependency>
<dependency>
<groupId>commons-lang</groupId>
<artifactId>commons-lang</artifactId>
<version>2.6</version>
</dependency>
<dependency>
<groupId>commons-io</groupId>
<artifactId>commons-io</artifactId>
<version>2.6</version>
</dependency>
<!--加入json解析 end-->
4.2、es配置
4.2.1、application.yml 配置文件
# es集群名称
elasticsearch.clusterName=single-node-cluster
#es用户名
elasticsearch.userName=elastic
#es密码
elasticsearch.password=elastic
# es host ip 地址(集群):本次使用的是单机模式
elasticsearch.hosts=43.142.243.124:9200
# es 请求方式
elasticsearch.scheme=http
# es 连接超时时间
elasticsearch.connectTimeOut=1000
# es socket 连接超时时间
elasticsearch.socketTimeOut=30000
# es 请求超时时间
elasticsearch.connectionRequestTimeOut=500
# es 最大连接数
elasticsearch.maxConnectNum=100
# es 每个路由的最大连接数
elasticsearch.maxConnectNumPerRoute=100
4.2.2、java 连接配置类
写一个 Java 配置类读取 application 中的配置信息:
package com.example.demo.config;
import lombok.extern.slf4j.Slf4j;
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.TransportAddress;
import org.elasticsearch.transport.client.PreBuiltTransportClient;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.net.InetAddress;
import java.util.ArrayList;
import java.util.List;
/**
* restHighLevelClient 客户端配置类
*/
@Slf4j
@Data
@Configuration
@ConfigurationProperties(prefix = "elasticsearch")
public class ElasticsearchConfig
// es host ip 地址(集群)
private String hosts;
// es用户名
private String userName;
// es密码
private String password;
// es 请求方式
private String scheme;
// es集群名称
private String clusterName;
// es 连接超时时间
private int connectTimeOut;
// es socket 连接超时时间
private int socketTimeOut;
// es 请求超时时间
private int connectionRequestTimeOut;
// es 最大连接数
private int maxConnectNum;
// es 每个路由的最大连接数
private int maxConnectNumPerRoute;
/**
* 如果@Bean没有指定bean的名称,那么这个bean的名称就是方法名
*/
@Bean(name = "restHighLevelClient")
public RestHighLevelClient restHighLevelClient()
// 拆分地址
// List<HttpHost> hostLists = new ArrayList<>();
// String[] hostList = hosts.split(",");
// for (String addr : hostList)
// String host = addr.split(":")[0];
// String port = addr.split(":")[1];
// hostLists.add(new HttpHost(host, Integer.parseInt(port), scheme));
//
// // 转换成 HttpHost 数组
// HttpHost[] httpHost = hostLists.toArray(new HttpHost[]);
// 此处为单节点es
String host = hosts.split(":")[0];
String port = hosts.split(":")[1];
HttpHost httpHost = new HttpHost(host,Integer.parseInt(port));
// 构建连接对象
RestClientBuilder builder = RestClient.builder(httpHost);
// 设置用户名、密码
CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(AuthScope.ANY,new UsernamePasswordCredentials(userName,password));
// 连接延时配置
builder.setRequestConfigCallback(requestConfigBuilder ->
requestConfigBuilder.setConnectTimeout(connectTimeOut);
requestConfigBuilder.setSocketTimeout(socketTimeOut);
requestConfigBuilder.setConnectionRequestTimeout(connectionRequestTimeOut);
return requestConfigBuilder;
);
// 连接数配置
builder.setHttpClientConfigCallback(httpClientBuilder ->
httpClientBuilder.setMaxConnTotal(maxConnectNum);
httpClientBuilder.setMaxConnPerRoute(maxConnectNumPerRoute);
httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
return httpClientBuilder;
);
return new RestHighLevelClient(builder);
4.3、mybatis配置
package com.example.test.dao;
import com.example.test.beans.Goods;
import java.util.List;
public interface GoodsMapper
/**
* 查询所有
*/
List<Goods> findAll();
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.example.test.dao.GoodsMapper">
<select id="findAll" resultType="com.example.test.beans.Goods">
select `id`,
`title`,
`price`,
`stock`,
`saleNum`,
`createTime`,
`categoryName`,
`brandName`,
`status`,
`spec`
from goods
</select>
</mapper>
4.4、实体对象
package com.example.test.beans;
import com.alibaba.fastjson.annotation.JSONField;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.experimental.Accessors;
import java.math.BigDecimal;
import java.util.Date;
public class Goods
/**
* 商品编号
*/
private Long id;
/**
* 商品标题
*/
private String title;
/**
* 商品价格
*/
private BigDecimal price;
/**
* 商品库存
*/
private Integer stock;
/**
* 商品销售数量
*/
private Integer saleNum;
/**
* 商品分类
*/
private String categoryName;
/**
* 商品品牌
*/
private String brandName;
/**
* 上下架状态
*/
private Integer status;
/**
* 说明书
*/
private String spec;
/**
* 商品创建时间
*/
@JSONField(format = "yyyy-MM-dd HH:mm:ss")
private Date createTime;
public Goods()
public Goods(Long id, String title, BigDecimal price, Integer stock, Integer saleNum, String categoryName, String brandName, Integer status, String spec, Date createTime)
this.id = id;
this.title = title;
this.price = price;
this.stock = stock;
this.saleNum = saleNum;
this.categoryName = categoryName;
this.brandName = brandName;
this.status = status;
this.spec = spec;
this.createTime = createTime;
public Long getId()
return id;
public void setId(Long id)
this.id = id;
public String getTitle()
return title;
public void setTitle(String title)
this.title = title;
public BigDecimal getPrice()
return price;
public void setPrice(BigDecimal price)
this.price = price;
public Integer getStock()
return stock;
public void setStock(Integer stock)
this.stock = stock;
public Integer getSaleNum()
return saleNum;
public void setSaleNum(Integer saleNum)
this.saleNum = saleNum;
public String getCategoryName()
return categoryName;
public void setCategoryName(String categoryName)
this.categoryName = categoryName;
public String getBrandName()
return brandName;
public void setBrandName(String brandName)
this.brandName = brandName;
public Integer getStatus()
return status;
public void setStatus(Integer status)
this.status = status;
public Date getCreateTime()
return createTime;
public void setCreateTime(Date createTime)
this.createTime = createTime;
public String getSpec()
return spec;
public void setSpec(String spec)
this.spec = spec;
@Override
public String toString()
return "Goods" +
"id=" + id +
", title='" + title + '\\'' +
", price=" + price +
", stock=" + stock +
", saleNum=" + saleNum +
", categoryName='" + categoryName + '\\'' +
", brandName='" + brandName + '\\'' +
", status=" + status +
", spec='" + spec + '\\'' +
", createTime=" + createTime +
'';
5、索引操作service
IndexTestService:
package com.example.test.service.es;
import org.elasticsearch.cluster.metadata.MappingMetaData;
import java.util.Map;
public interface IndexTestService
public boolean indexCreate() throws Exception;
public Map<String,Object> getMapping(String indexName) throws Exception;
public boolean indexDelete(String indexName) throws Exception;
public boolean indexExists(String indexName) throws Exception;
IndexTestServiceImpl :
package com.example.test.service.impl.es;
import com.example.test.service.es.IndexTestService;
import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest;
import org.elasticsearch.action.support.master.AcknowledgedResponse;
import org.elasticsearch.client.IndicesClient;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.CreateIndexRequest;
import org.elasticsearch.client.indices.CreateIndexResponse;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.elasticsearch.client.indices.GetIndexResponse;
import org.elasticsearch.cluster.metadata.MappingMetaData;
import org.elasticsearch.common.xcontent.XContentType;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.Map;
/**
* 索引服务类
*/
@Service
public class IndexTestServiceImpl implements IndexTestService
@Autowired
RestHighLevelClient restHighLevelClient;
@Override
public boolean indexCreate() throws Exception
// 1、创建 创建索引request 参数:索引名mess
CreateIndexRequest indexRequest = new CreateIndexRequest("goods");
// 2、设置索引的settings
// 3、设置索引的mappings
String mapping = "\\n" +
"\\n" +
"\\t\\t\\"properties\\": \\n" +
"\\t\\t \\"brandName\\": \\n" +
"\\t\\t\\t\\"type\\": \\"keyword\\"\\n" +
"\\t\\t ,\\n" +
"\\t\\t \\"categoryName\\": \\n" +
"\\t\\t\\t\\"type\\": \\"keyword\\"\\n" +
"\\t\\t ,\\n" +
"\\t\\t \\"createTime\\": \\n" +
"\\t\\t\\t\\"type\\": \\"date\\",\\n" +
"\\t\\t\\t\\"format\\": \\"yyyy-MM-dd HH:mm:ss\\"\\n" +
"\\t\\t ,\\n" +
"\\t\\t \\"id\\": \\n" +
"\\t\\t\\t\\"type\\": \\"long\\"\\n" +
"\\t\\t ,\\n" +
"\\t\\t \\"price\\": \\n" +
"\\t\\t\\t\\"type\\": \\"double\\"\\n" +
"\\t\\t ,\\n" +
"\\t\\t \\"saleNum\\": \\n" +
"\\t\\t\\t\\"type\\": \\"integer\\"\\n" +
"\\t\\t ,\\n" +
"\\t\\t \\"status\\": \\n" +
"\\t\\t\\t\\"type\\": \\"integer\\"\\n" +
"\\t\\t ,\\n" +
"\\t\\t \\"stock\\": \\n" +
"\\t\\t\\t\\"type\\": \\"integer\\"\\n" +
"\\t\\t ,\\n" +
"\\t\\t\\"spec\\": \\n" +
"\\t\\t\\t\\"type\\": \\"text\\",\\n" +
"\\t\\t\\t\\"analyzer\\": \\"ik_max_word\\",\\n" +
"\\t\\t\\t\\"search_analyzer\\": \\"ik_smart\\"\\n" +
"\\t\\t ,\\n" +
"\\t\\t \\"title\\": \\n" +
"\\t\\t\\t\\"type\\": \\"text\\",\\n" +
"\\t\\t\\t\\"analyzer\\": \\"ik_max_word\\",\\n" +
"\\t\\t\\t\\"search_analyzer\\": \\"ik_smart\\"\\n" +
"\\t\\t \\n" +
"\\t\\t\\n" +
" ";
// 4、 设置索引的别名
// 5、 发送请求
// 5.1 同步方式发送请求
IndicesClient indicesClient = restHighLevelClient.indices();
indexRequest.mapping(mapping, XContentType.JSON);
// 请求服务器
CreateIndexResponse response = indicesClient.create(indexRequest, RequestOptions.DEFAULT);
return response.isAcknowledged();
/**
* 获取表结构
* GET goods/_mapping
*/
@Override
public Map<String, Object> getMapping(String indexName) throws Exception
IndicesClient indicesClient = restHighLevelClient.indices();
// 创建get请求
GetIndexRequest request = new GetIndexRequest(indexName);
// 发送get请求
GetIndexResponse response = indicesClient.get(request, RequestOptions.DEFAULT);
// 获取表结构
Map<String, MappingMetaData> mappings = response.getMappings();
Map<String, Object> sourceAsMap = mappings.get(indexName).getSourceAsMap();
return sourceAsMap;
/**
* 删除索引库
*/
@Override
public boolean indexDelete(String indexName) throws Exception
IndicesClient indicesClient = restHighLevelClient.indices();
// 创建delete请求方式
DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest(indexName);
// 发送delete请求
AcknowledgedResponse response = indicesClient.delete(deleteIndexRequest, RequestOptions.DEFAULT);
return response.isAcknowledged();
/**
* 判断索引库是否存在
*/
@Override
public boolean indexExists(String indexName) throws Exception
IndicesClient indicesClient = restHighLevelClient.indices();
// 创建get请求
GetIndexRequest request = new GetIndexRequest(indexName);
// 判断索引库是否存在
boolean result = indicesClient.exists(request, RequestOptions.DEFAULT);
return result;
测试代码:
package com.example.test;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.serializer.SerializerFeature;
import com.example.common.utils.java.StackTraceUtil;
import com.example.common.utils.java.UtilMisc;
import com.example.test.beans.Goods;
import com.example.test.service.es.DocumentTestService;
import com.example.test.service.es.EsQueryDataService;
import com.example.test.service.es.IndexTestService;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.rest.RestStatus;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import java.math.BigDecimal;
import java.util.Date;
import java.util.List;
import java.util.Map;
@Slf4j
@RunWith(SpringRunner.class)
@SpringBootTest
public class ElasticsearchTest1
@Autowired
IndexTestService indexTestService;
/**
* 创建索引库和映射表结构
* 注意:索引一般不会这么创建
*/
@Test
public void indexCreate()
boolean flag = false;
try
flag = indexTestService.indexCreate();
catch (Exception e)
log.error("创建索引失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
System.out.println("创建索引是否成功:" + flag);
/**
* 获取索引表结构
*/
@Test
public void getMapping()
try
Map<String, Object> indexMap = indexTestService.getMapping("goods");
// 将bean 转化为格式化后的json字符串
String pretty1 = JSON.toJSONString(indexMap, SerializerFeature.PrettyFormat, SerializerFeature.WriteMapNullValue,
SerializerFeature.WriteDateUseDateFormat);
log.info("索引信息:", pretty1);
catch (Exception e)
log.error("获取索引失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
/**
* 删除索引库
*
*/
@Test
public void deleteIndex()
boolean flag = false;
try
flag = indexTestService.indexDelete("goods");
catch (Exception e)
log.error("删除索引库失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
System.out.println("删除索引库是否成功:" + flag);
/**
* 校验索引库是否存在
*
*/
@Test
public void indexExists()
boolean flag = false;
try
flag = indexTestService.indexExists("goods");
catch (Exception e)
log.error("校验索引库是否存在,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
System.out.println("索引库是否存在:" + flag);
6、文档操作service
测试数据:https://pan.baidu.com/s/1A_ckKV7wsLJQJoeeALgkig?pwd=r68c
DocumentTestService:
package com.example.test.service.es;
import com.example.test.beans.Goods;
import org.elasticsearch.rest.RestStatus;
import java.io.IOException;
public interface DocumentTestService
public RestStatus addDocument(String indexName, String type, Goods goods) throws IOException;
public Goods getDocument(String indexName, String type, String id) throws Exception;
public RestStatus updateDocument(String indexName, String type, Goods goods) throws IOException;
public RestStatus deleteDocument(String indexName, String type, String id) throws IOException;
public RestStatus batchImportGoodsData() throws IOException;
DocumentTestServiceImpl :
package com.example.test.service.impl.es;
import com.alibaba.fastjson.JSON;
import com.example.common.utils.ObjectUtil;
import com.example.common.utils.java.BeanMapUtils;
import com.example.test.beans.Goods;
import com.example.test.dao.GoodsMapper;
import com.example.test.service.es.DocumentTestService;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.get.GetRequest;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.xcontent.XContentType;
import org.elasticsearch.rest.RestStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import javax.annotation.Resource;
import java.io.IOException;
import java.util.List;
import java.util.Map;
/**
* 文档服务类
*/
@Slf4j
@Service
public class DocumentTestServiceImpl implements DocumentTestService
@Autowired
RestHighLevelClient restHighLevelClient;
@Resource
GoodsMapper goodsMapper;
/**
* 增加文档信息
*/
@Override
public RestStatus addDocument(String indexName, String type, Goods goods) throws IOException
// 默认类型为_doc
type = ObjectUtil.isEmptyObject(type) ? "_doc" : type;
// 将对象转为json
String data = JSON.toJSONString(goods);
// 创建索引请求对象
IndexRequest indexRequest = new IndexRequest(indexName,type).id(goods.getId() + "").source(data, XContentType.JSON);
// 执行增加文档
IndexResponse response = restHighLevelClient.index(indexRequest, RequestOptions.DEFAULT);
RestStatus status = response.status();
log.info("创建状态:", status);
return status;
/**
* 获取文档信息
*/
@Override
public Goods getDocument(String indexName, String type, String id) throws Exception
// 默认类型为_doc
type = ObjectUtil.isEmptyObject(type) ? "_doc" : type;
// 创建获取请求对象
GetRequest getRequest = new GetRequest(indexName, type, id);
GetResponse response = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT);
Map<String, Object> sourceAsMap = response.getSourceAsMap();
Goods goods = BeanMapUtils.mapToBean(sourceAsMap,Goods.class);
return goods;
/**
* 更新文档信息
*/
@Override
public RestStatus updateDocument(String indexName, String type, Goods goods) throws IOException
// 默认类型为_doc
type = ObjectUtil.isEmptyObject(type) ? "_doc" : type;
// 将对象转为json
String data = JSON.toJSONString(goods);
// 创建索引请求对象
UpdateRequest updateRequest = new UpdateRequest(indexName, type, String.valueOf(goods.getId()));
// 设置更新文档内容
updateRequest.doc(data, XContentType.JSON);
// 执行更新文档
UpdateResponse response = restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT);
log.info("创建状态:", response.status());
RestStatus status = response.status();
log.info("更新文档信息响应状态:", status);
return status;
/**
* 删除文档信息
*/
@Override
public RestStatus deleteDocument(String indexName, String type, String id) throws IOException
// 默认类型为_doc
type = ObjectUtil.isEmptyObject(type) ? "_doc" : type;
// 创建删除请求对象
DeleteRequest deleteRequest = new DeleteRequest(indexName, type, id);
// 执行删除文档
DeleteResponse response = restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT);
RestStatus status = response.status();
log.info("删除文档响应状态:", status);
return status;
@Override
public RestStatus batchImportGoodsData() throws IOException
//1.查询所有数据,mysql
List<Goods> goodsList = goodsMapper.findAll();
//2.bulk导入
BulkRequest bulkRequest = new BulkRequest();
//2.1 循环goodsList,创建IndexRequest添加数据
for (Goods goods : goodsList)
//将goods对象转换为json字符串
String data = JSON.toJSONString(goods);//map -->
IndexRequest indexRequest = new IndexRequest("goods","_doc");
indexRequest.id(goods.getId() + "").source(data, XContentType.JSON);
bulkRequest.add(indexRequest);
BulkResponse response = restHighLevelClient.bulk(bulkRequest, RequestOptions.DEFAULT);
return response.status();
测试代码:
package com.example.test;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.serializer.SerializerFeature;
import com.example.common.utils.java.StackTraceUtil;
import com.example.common.utils.java.UtilMisc;
import com.example.test.beans.Goods;
import com.example.test.service.es.DocumentTestService;
import com.example.test.service.es.EsQueryDataService;
import com.example.test.service.es.IndexTestService;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.rest.RestStatus;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import java.math.BigDecimal;
import java.util.Date;
import java.util.List;
import java.util.Map;
@Slf4j
@RunWith(SpringRunner.class)
@SpringBootTest
public class ElasticsearchTest1
@Autowired
DocumentTestService documentTestService;
/**
* 添加文档
*
*/
@Test
public void addDocument()
// 创建商品信息
Goods goods = new Goods();
goods.setId(1L);
goods.setTitle("Apple iPhone 13 Pro (A2639) 256GB 远峰蓝色 支持移动联通电信5G 双卡双待手机");
goods.setPrice(new BigDecimal("8799.00"));
goods.setStock(1000);
goods.setSaleNum(599);
goods.setCategoryName("手机");
goods.setBrandName("Apple");
goods.setStatus(0);
goods.setCreateTime(new Date());
// 返回状态
RestStatus restStatus = null;
try
restStatus = documentTestService.addDocument("goods","_doc", goods);
catch (Exception e)
log.error("添加文档失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
System.out.println("添加文档响应状态:" + restStatus);
@Test
public void getDocument()
// 返回信息
Goods goods = null;
try
goods = documentTestService.getDocument("goods", "_doc", "1");
catch (Exception e)
log.error("查询文档失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
System.out.println("查询的文档信息:" + goods);
@Test
public void updateDocument()
// 创建商品信息
Goods goods = new Goods();
goods.setTitle("Apple iPhone 13 Pro Max (A2644) 256GB 远峰蓝色 支持移动联通电信5G 双卡双待手机");
goods.setPrice(new BigDecimal("9999"));
goods.setId(1L);
// 返回状态
RestStatus restStatus = null;
try
restStatus = documentTestService.updateDocument("goods", "_doc", goods);
catch (Exception e)
log.error("更新文档失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
System.out.println("更新文档响应状态:" + restStatus);
@Test
public void deleteDocument()
// 返回状态
RestStatus restStatus = null;
try
restStatus = documentTestService.deleteDocument("goods", "_doc", "1");
catch (Exception e)
log.error("删除文档失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
System.out.println("删除文档响应状态:" + restStatus);
/**
* 批量导入测试数据
*/
@Test
public void importDocument()
// 返回状态
RestStatus restStatus = null;
try
restStatus = documentTestService.batchImportGoodsData();
catch (Exception e)
log.error("批量导入数据失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
System.out.println("批量导入数据响应状态:" + restStatus);
7、DSL高级查询操作
EsQueryDataService:
package com.example.test.service.es;
import java.io.IOException;
import java.util.List;
import java.util.Map;
public interface EsQueryDataService
public <T> List<T> termQuery(String indexName, String columnName, Object value, Class<T> classz);
public <T> List<T> termsQuery(String indexName, String columnName, Object[] dataArgs, Class<T> classz);
public <T> List<T> matchAllQuery(String indexName, Class<T> classz, int startIndex, int pageSize, List<String> orderList, String columnName, Object value);
public <T> List<T> matchPhraseQuery(String indexName, Class<T> classz, String columnName, Object value);
public <T> List<T> matchMultiQuery(String indexName, Class<T> classz, String[] fields, Object text);
public <T> List<T> wildcardQuery(String indexName, Class<T> classz,String field, String text);
public <T> List<T> fuzzyQuery(String indexName, Class<T> classz, String field, String text);
public <T> List<T> boolQuery(String indexName,Class<T> beanClass);
public void metricQuery(String indexName);
public void bucketQuery(String indexName,String bucketField, String bucketFieldAlias);
public void subBucketQuery(String indexName,String bucketField, String bucketFieldAlias,String avgFiled,String avgFiledAlias);
public void subSubAgg(String indexName);
EsQueryDataServiceImpl :
package com.example.test.service.impl.es;
import com.alibaba.fastjson.JSON;
import com.example.common.exception.myexception.MyBusinessException;
import com.example.common.utils.ObjectUtil;
import com.example.common.utils.java.StackTraceUtil;
import com.example.test.beans.Goods;
import com.example.test.service.es.EsQueryDataService;
import lombok.extern.slf4j.Slf4j;
import org.apache.poi.ss.formula.functions.T;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.text.Text;
import org.elasticsearch.common.unit.Fuzziness;
import org.elasticsearch.index.query.*;
import org.elasticsearch.rest.RestStatus;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilder;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.terms.ParsedStringTerms;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.avg.ParsedAvg;
import org.elasticsearch.search.aggregations.metrics.max.ParsedMax;
import org.elasticsearch.search.aggregations.metrics.min.ParsedMin;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightField;
import org.elasticsearch.search.sort.SortBuilder;
import org.elasticsearch.search.sort.SortOrder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import javax.rmi.CORBA.Util;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Set;
@Slf4j
@Service
public class EsQueryDataServiceImpl implements EsQueryDataService
@Autowired
RestHighLevelClient restHighLevelClient;
/**
* 精确查询(termQuery)
*/
@Override
public <T> List<T> termQuery(String indexName, String field, Object value, Class<T> beanClass)
// 查询的数据列表
List<T> list = new ArrayList<>();
try
// 构建查询条件(注意:termQuery 支持多种格式查询,如 boolean、int、double、string 等,这里使用的是 string 的查询)
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.termQuery(field, value));
// 执行查询es数据
queryEsData(indexName, beanClass, list, searchSourceBuilder);
catch (IOException e)
log.error("精确查询数据失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999","精确查询数据失败");
return list;
/**
* terms:多个查询内容在一个字段中进行查询
*/
@Override
public <T> List<T> termsQuery(String indexName, String field, Object[] dataArgs, Class<T> beanClass)
// 查询的数据列表
List<T> list = new ArrayList<>();
try
// 构建查询条件(注意:termsQuery 支持多种格式查询,如 boolean、int、double、string 等,这里使用的是 string 的查询)
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.termsQuery(field, dataArgs));
// 展示100条,默认只展示10条记录
searchSourceBuilder.size(100);
// 执行查询es数据
queryEsData(indexName, beanClass, list, searchSourceBuilder);
catch (IOException e)
log.error("单字段多内容查询数据失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999","单字段多内容查询数据失败");
return list;
/**
* 匹配查询符合条件的所有数据,并设置分页
*/
@Override
public <T> List<T> matchAllQuery(String indexName, Class<T> beanClass, int startIndex, int pageSize, List<String> orderList, String field, Object value)
// 查询的数据列表
List<T> list = new ArrayList<>();
try
// 创建查询源构造器
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询条件
if (!ObjectUtil.isEmptyObject(field) && !ObjectUtil.isEmptyObject(value))
MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery(field, value);
searchSourceBuilder.query(matchQueryBuilder);
else
MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();
searchSourceBuilder.query(matchAllQueryBuilder);
// 设置分页
searchSourceBuilder.from(startIndex);
searchSourceBuilder.size(pageSize);
// 设置排序
if (orderList != null)
for(String order : orderList)
// -开头代表:倒序
boolean flag = order.startsWith("-");
SortOrder sort = flag ? SortOrder.DESC: SortOrder.ASC;
order = flag ? order.substring(1) : order;
searchSourceBuilder.sort(order, sort);
// 执行查询es数据
queryEsData(indexName, beanClass, list, searchSourceBuilder);
catch (IOException e)
log.error("查询所有数据失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999","查询所有数据失败");
return list;
/**
* 词语匹配查询
*/
@Override
public <T> List<T> matchPhraseQuery(String indexName, Class<T> beanClass, String field, Object value)
// 查询的数据列表
List<T> list = new ArrayList<>();
try
// 构建查询条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.matchPhraseQuery(field, value));
// 执行查询es数据
queryEsData(indexName, beanClass, list, searchSourceBuilder);
catch (IOException e)
log.error("词语匹配查询失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999","词语匹配查询失败");
return list;
/**
* 内容在多字段中进行查询
*/
@Override
public <T> List<T> matchMultiQuery(String indexName, Class<T> beanClass, String[] fields, Object text)
// 查询的数据列表
List<T> list = new ArrayList<>();
try
// 构建查询条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 设置查询条件
searchSourceBuilder.query(QueryBuilders.multiMatchQuery(text, fields));
// 执行查询es数据
queryEsData(indexName, beanClass, list, searchSourceBuilder);
catch (IOException e)
log.error("词语匹配查询失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999","词语匹配查询失败");
return list;
/**
* 通配符查询(wildcard):会对查询条件进行分词。还可以使用通配符 ?(任意单个字符) 和 * (0个或多个字符)
*
* *:表示多个字符(0个或多个字符)
* ?:表示单个字符
*/
@Override
public <T> List<T> wildcardQuery(String indexName, Class<T> beanClass,String field, String text)
// 查询的数据列表
List<T> list = new ArrayList<>();
try
// 构建查询条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.wildcardQuery(field, text));
// 执行查询es数据
queryEsData(indexName, beanClass, list, searchSourceBuilder);
catch (IOException e)
log.error("通配符查询失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999","通配符查询失败");
return list;
/**
* 模糊查询所有以 “三” 结尾的商品信息
*/
@Override
public <T> List<T> fuzzyQuery(String indexName, Class<T> beanClass, String field, String text)
// 查询的数据列表
List<T> list = new ArrayList<>();
try
// 构建查询条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.fuzzyQuery(field, text).fuzziness(Fuzziness.AUTO));
// 执行查询es数据
queryEsData(indexName, beanClass, list, searchSourceBuilder);
catch (IOException e)
log.error("通配符查询失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999","通配符查询失败");
return list;
/**
* boolQuery 查询
* 高亮展示标题搜索字段
* 设置出参返回字段
*
* 案例:查询从2018-2022年间标题含 三星 的商品信息
*/
@Override
public <T> List<T> boolQuery(String indexName,Class<T> beanClass)
// 查询的数据列表
List<T> list = new ArrayList<>();
try
// 创建 Bool 查询构建器
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
// 构建查询条件
boolQueryBuilder.must(QueryBuilders.matchQuery("title", "三星")); // 标题
boolQueryBuilder.must(QueryBuilders.matchQuery("spec", "联通3G"));// 说明书
boolQueryBuilder.filter().add(QueryBuilders.rangeQuery("createTime").format("yyyy").gte("2018").lte("2022")); // 创建时间
// 构建查询源构建器
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(boolQueryBuilder);
searchSourceBuilder.size(100);
// 甚至返回字段
// 如果查询的属性很少,那就使用includes,而excludes设置为空数组
// 如果排序的属性很少,那就使用excludes,而includes设置为空数组
String[] includes = "title", "categoryName", "price";
String[] excludes = ;
searchSourceBuilder.fetchSource(includes, excludes);
// 高亮设置
// 设置高亮三要素: field: 你的高亮字段 , preTags :前缀 , postTags:后缀
HighlightBuilder highlightBuilder = new HighlightBuilder().field("title").preTags("<font color='red'>").postTags("</font>");
highlightBuilder.field("spec").preTags("<font color='red'>").postTags("</font>");
searchSourceBuilder.highlighter(highlightBuilder);
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest(indexName);
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 根据状态和数据条数验证是否返回了数据
if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits() > 0)
SearchHits hits = searchResponse.getHits();
for (SearchHit hit : hits)
// 将 JSON 转换成对象
T bean = JSON.parseObject(hit.getSourceAsString(), beanClass);
// 获取高亮的数据
HighlightField highlightField = hit.getHighlightFields().get("title");
System.out.println("高亮名称:" + highlightField.getFragments()[0].string());
// 替换掉原来的数据
Text[] fragments = highlightField.getFragments();
if (fragments != null && fragments.length > 0)
StringBuilder title = new StringBuilder();
for (Text fragment : fragments)
title.append(fragment);
// 获取method对象,其中包含方法名称和参数列表
Method setTitle = beanClass.getMethod("setTitle", String.class);
if (setTitle != null)
// 执行method,bean为实例对象,后面是方法参数列表;setTitle没有返回值
setTitle.invoke(bean, title.toString());
list.add(bean);
catch (Exception e)
log.error("布尔查询失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999", "布尔查询失败");
return list;
/**
* 聚合查询 : 聚合查询一定是【先查出结果】,然后对【结果使用聚合函数】做处理.
*
* Metric 指标聚合分析。常用的操作有:avg:求平均、max:最大值、min:最小值、sum:求和等
*
* 案例:分别获取最贵的商品和获取最便宜的商品
*/
@Override
public void metricQuery(String indexName)
try
// 构建查询条件
MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();
// 创建查询源构造器
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(matchAllQueryBuilder);
// 获取最贵的商品
AggregationBuilder maxPrice = AggregationBuilders.max("maxPrice").field("price");
searchSourceBuilder.aggregation(maxPrice);
// 获取最便宜的商品
AggregationBuilder minPrice = AggregationBuilders.min("minPrice").field("price");
searchSourceBuilder.aggregation(minPrice);
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest(indexName);
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();
ParsedMax max = aggregations.get("maxPrice");
log.info("最贵的价格:" + max.getValue());
ParsedMin min = aggregations.get("minPrice");
log.info("最便宜的价格:" + min.getValue());
catch (Exception e)
log.error("指标聚合分析查询失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999", "指标聚合分析查询失败");
/**
* 聚合查询: 聚合查询一定是【先查出结果】,然后对【结果使用聚合函数】做处理.
*
* Bucket 分桶聚合分析 : 对查询出的数据进行分组group by,再在组上进行游标聚合
*
* 案例:根据品牌进行聚合查询
*/
@Override
public void bucketQuery(String indexName,String bucketField, String bucketFieldAlias)
try
// 构建查询条件
MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();
// 创建查询源构造器
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(matchAllQueryBuilder);
// 根据bucketField进行分组查询
TermsAggregationBuilder aggBrandName = AggregationBuilders.terms(bucketFieldAlias).field(bucketField);
searchSourceBuilder.aggregation(aggBrandName);
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest(indexName);
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();
ParsedStringTerms aggBrandName1 = aggregations.get(bucketField); // 分组结果数据
for (Terms.Bucket bucket : aggBrandName1.getBuckets())
log.info(bucket.getKeyAsString() + "====" + bucket.getDocCount());
catch (IOException e)
log.error("分桶聚合分析查询失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999", "分桶聚合分析查询失败");
/**
* 子聚合聚合查询
* Bucket 分桶聚合分析
*
* 案例:根据商品分类进行分组查询,并且获取分类商品中的平均价格
*/
@Override
public void subBucketQuery(String indexName,String bucketField, String bucketFieldAlias,String avgFiled,String avgFiledAlias)
try
// 构建查询条件
MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();
// 创建查询源构造器
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(matchAllQueryBuilder);
// 根据 bucketField进行分组查询,并且获取分类信息中 指定字段的平均值
TermsAggregationBuilder subAggregation = AggregationBuilders.terms(bucketFieldAlias).field(bucketField)
.subAggregation(AggregationBuilders.avg(avgFiledAlias).field(avgFiled));
searchSourceBuilder.aggregation(subAggregation);
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest(indexName);
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();
ParsedStringTerms aggBrandName1 = aggregations.get(bucketFieldAlias);
for (Terms.Bucket bucket : aggBrandName1.getBuckets())
// 获取聚合后的 组内字段平均值,注意返回值不是Aggregation对象,而是指定的ParsedAvg对象
ParsedAvg avgPrice = bucket.getAggregations().get(avgFiledAlias);
log.info(bucket.getKeyAsString() + "====" + avgPrice.getValueAsString());
catch (IOException e)
log.error("分桶聚合分析查询失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999", "分桶聚合分析查询失败");
/**
* 综合聚合查询
*
* 根据商品分类聚合,获取每个商品类的平均价格,并且在商品分类聚合之上子聚合每个品牌的平均价格
*/
@Override
public void subSubAgg(String indexName)
try
// 构建查询条件
MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();
// 创建查询源构造器
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(matchAllQueryBuilder);
// 注意这里聚合写的位置不要写错,很容易搞混,错一个括号就不对了
TermsAggregationBuilder subAggregation = AggregationBuilders.terms("categoryNameAgg").field("categoryName")
.subAggregation(AggregationBuilders.avg("categoryNameAvgPrice").field("price"))
.subAggregation(AggregationBuilders.terms("brandNameAgg").field("brandName")
.subAggregation(AggregationBuilders.avg("brandNameAvgPrice").field("price")));
searchSourceBuilder.aggregation(subAggregation);
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest(indexName);
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
//获取总记录数
log.info("totalHits = " + searchResponse.getHits().getTotalHits());
// 获取聚合信息
Aggregations aggregations = searchResponse.getAggregations();
ParsedStringTerms categoryNameAgg = aggregations.get("categoryNameAgg");
//获取值返回
for (Terms.Bucket bucket : categoryNameAgg.getBuckets())
// 获取聚合后的分类名称
String categoryName = bucket.getKeyAsString();
// 获取聚合命中的文档数量
long docCount = bucket.getDocCount();
// 获取聚合后的分类的平均价格,注意返回值不是Aggregation对象,而是指定的ParsedAvg对象
ParsedAvg avgPrice = bucket.getAggregations().get("categoryNameAvgPrice");
System.out.println(categoryName + "======平均价:" + avgPrice.getValue() + "======数量:" + docCount);
ParsedStringTerms brandNameAgg = bucket.getAggregations().get("brandNameAgg");
for (Terms.Bucket brandeNameAggBucket : brandNameAgg.getBuckets())
// 获取聚合后的品牌名称
String brandName = brandeNameAggBucket.getKeyAsString();
// 获取聚合后的品牌的平均价格,注意返回值不是Aggregation对象,而是指定的ParsedAvg对象
ParsedAvg brandNameAvgPrice = brandeNameAggBucket.getAggregations().get("brandNameAvgPrice");
log.info(" " + brandName + "======" + brandNameAvgPrice.getValue());
catch (IOException e)
log.error("综合聚合查询失败,错误信息:" + StackTraceUtil.getStackTraceAsString(e));
throw new MyBusinessException("99999", "综合聚合查询失败");
/**
* 执行es查询
* @param indexName
* @param beanClass
* @param list
* @param searchSourceBuilder
* @param <T>
* @throws IOException
*/
private <T> void queryEsData(String indexName, Class<T> beanClass, List<T> list, SearchSourceBuilder searchSourceBuilder) throws IOException
// 创建查询请求对象,将查询对象配置到其中
SearchRequest searchRequest = new SearchRequest(indexName);
searchRequest.source(searchSourceBuilder);
// 执行查询,然后处理响应结果
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 根据状态和数据条数验证是否返回了数据
if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits() > 0)
SearchHits hits = searchResponse.getHits();
for (SearchHit hit : hits)
// 将 JSON 转换成对象
Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);
// 将 JSON 转换成对象
T bean = JSON.parseObject(hit.getSourceAsString(), beanClass);
list.add(bean);
测试代码:
package com.example.test;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.serializer.SerializerFeature;
import com.example.common.utils.java.StackTraceUtil;
import com.example.common.utils.java.UtilMisc;
import com.example.test.beans.Goods;
import com.example.test.service.es.EsQueryDataService;
import lombok.extern.以上是关于elasticsearch学习:es客户端RestHighLevelClient的主要内容,如果未能解决你的问题,请参考以下文章
elasticsearch系列七:ES Java客户端-Elasticsearch Java client(ES Client 简介Java REST ClientJava ClientSpri(代码
elasticsearch使用BulkProcessor批量入库数据
ElasticSearch 将嵌套字段的 Rest 查询转换为客户端 Scala/Java 代码
ES(elasticsearch) springboot+es【深分页scrollId】
ElasticSearch04_elasticsearch-Rest-Client整合SpringBoot中使用保存数据利用JAVA代码操作es