机器学习复现2.非递归法构造并搜索kd树
Posted 天津泰达康师傅
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习复现2.非递归法构造并搜索kd树相关的知识,希望对你有一定的参考价值。
kd树的目的:在特征空间的维数大及训练数据容量大时尤其必要。
kd树的构建,即划分各样本点对应的子区域
kd树的搜索,
(1)在kd树中找出包含目标点x的叶节点,即从根结点开始递归地向下访问kd树。若目标点x的当前维的坐标小于切分点的坐标,否则移动到右子结点,直到子节点为叶节点为止。
(2)更新当前找到的叶节点为”当前最近点“。
(3)递归向上回溯父节点,在每个结点执行以下操作:
(a)先判断该结点保存的实例点是否比当前最近点距离目标点更近,则以该实例点为”当前最近点“。
(b)检查该子节点的父节点的另一子结点对应的区域是否有更近的点。具体判断方式如下:
以目标点为球心,目标点与”当前最近点“之间的距离为半径做超球面。判断该超球面与另一子节点所对应的超平面是否有可能相交,如果相交,则需要递归查找另一子节点对应子区域内的所有点。如果不相交,继续向上回退。
(4)回退到根节点时,搜索结束。最后的当前最近点为x的最近邻点。
如果kd树节点中不记录父节点,可尝试利用栈进行回溯。
#!/usr/bin/env python
#-*- coding:utf-8 -*-
# @Time : $DATE $TIME
# @Author : yck
import numpy as np
from queue import Queue
import copy
import matplotlib.pyplot as plt
##训练集,如下例,特征空间维度为2。
train_dataset_x = np.random.randint(1,100,(10000,3))
# train_dataset_x = np.array([[2,3],
# [5,4],
# [9,6],
# [4,7],
# [8,1],
# [7,2]])
def kd_median(arr):
##返回的是样本索引索引,arr为抽取出来的各样本的第k维
##返回:分割的样本索引(中位数),左划分样本索引,右划分样本索引
sorted_array = np.argsort(arr)
return sorted_array[int((arr.size)/2)],sorted_array[:int((arr.size)/2)],sorted_array[int((arr.size)/2)+1:]
def kd_seq(train_dataset_x):
##按方差从大到小返回各特征索引,构造kd树时可以使用这一顺序
##比如某例子中,特征空间为3维,其方差从大到小为特征2,特征1,特征0,该函数就返回np.array([2 1 0])
##kd树中,按照此顺序选择每层分割实例对应的特征。第一层选取特征2,第二层选取特征1,第三层选取特征0,第四层选取特征2......以此类推
kd_charc_var = np.var(train_dataset_x,axis=0)
sorted_kd_charc_var = np.argsort(-kd_charc_var)
return np.array([i for i in range(len(train_dataset_x[0]))])[sorted_kd_charc_var]
class kd_tree(object):
##以train_dataset_x样本点特征空间第0维[2 5 9 4 8 7]为例
##排序后为[2 4 5 7 8 9]
split_instance = None ##分割实例索引,中位数为7,split_instance返回其在[2 5 9 4 8 7]中的索引5
charac_dim = None ##结点所在层的分割维度,例子中分割维度为0
left_instance = None ##位于中位数以左的各样本索引,对应2,4,5的索引。返回np.array([0 3 1])
right_instance = None ##位于中位数以右的各样本索引,同上。
left_child = None ##左孩子指针,链接一个kd_tree对象
right_child = None ##右孩子指针,链接一个kd_tree对象
has_visited = False ##是否已回溯,初始设置为未访问,等一会儿回溯的时候用。
def __init__(self,split_instance,charac_dim,level,left_instance,right_instance):
'''
kd_tree初始化函数
:param split_instance: 分割样本
:param charac_dim: 选取的特征维度
:param level:
:param left_instance:
:param right_instance:
'''
self.split_instance = split_instance
self.charac_dim = charac_dim
self.level = level ##从第零层开始
self.left_instance = left_instance
self.right_instance = right_instance
class k_neighbour(object):
##利用kd树实现最近邻算法
p = 2 ##lp距离中,p=2对应欧几里得距离
kd_tree = None ##构造出来的kd树
route = [] ##路径,里面装结点。
segmentation_sample = None ##求得的最邻近点
low_dist = float("inf") ##最短距离,初始为无穷大
has_calculate = np.array([[]])
def lp_dis(self,arr1,arr2):
'''
:param arr1:arr1样本
:param arr2: arr2样本
:return: 返回arr1和arr2样本的欧氏距离
'''
return np.linalg.norm(arr1-arr2)
def Build_Tree(self,train_dataset_x):
'''
该函数为构造kd树,采用
:param train_dataset_x: 训练集
:return:返回空,但该函数实现了对类中kd树对象的构造
'''
charac_seq = kd_seq(train_dataset_x)
## charac_seq为选取特征的顺序
k = len(train_dataset_x[0]) ##特征数
## charac_dim = level % k
split_instance, left_instance, right_instance = kd_median(train_dataset_x[:, charac_seq[0]])
root = kd_tree(split_instance=split_instance, charac_dim=charac_seq[0],
level=0, left_instance=left_instance, right_instance=right_instance)
##通过层序遍历构造出kd树
queue = Queue()
queue.put(root) ##根节点入栈
while queue.qsize() > 0: # 队列不为空
current_node = queue.get()
father_level = current_node.level
child_charac_seq = (father_level + 1) % k ##该层对应的特征维度
if (len(current_node.left_instance) > 0):
split_instance, left_instance, right_instance = (kd_median(train_dataset_x[
[current_node.left_instance], [
charac_seq[
child_charac_seq]] * len(
current_node.left_instance)][0]))
##split_instance:中位数样本索引
##left_instance:左划分索引
##right_instance:右划分索引
##下面这行代码的意思是:由于除根节点外,剩余kd树中结点对应的空间中的点均有可能不是全部的样本点,需要返回正确的索引。
split_instance, left_instance, right_instance = current_node.left_instance[split_instance], \\
current_node.left_instance[left_instance], \\
current_node.left_instance[right_instance]
##构造左子树
current_node.left_child = kd_tree(split_instance=split_instance, charac_dim=charac_seq[child_charac_seq],
level=father_level + 1,
left_instance=left_instance, right_instance=right_instance)
queue.put(current_node.left_child)
if (len(current_node.right_instance) > 0):
split_instance, left_instance, right_instance = (kd_median(train_dataset_x[
[current_node.right_instance], [
charac_seq[
child_charac_seq]] * len(
current_node.right_instance)][
0]))
##返回原数组下标
split_instance, left_instance, right_instance = current_node.right_instance[split_instance], \\
current_node.right_instance[left_instance], \\
current_node.right_instance[right_instance]
current_node.right_child = kd_tree(split_instance=split_instance, charac_dim=charac_seq[child_charac_seq],
level=father_level + 1,
left_instance=left_instance, right_instance=right_instance)
queue.put(current_node.right_child)
self.kd_tree = root
return
def search(self,train_dataset_x,kd_tree,new_sample):
##在kd树中找出包含目标点x的叶节点:从指定结点kd_tree出发,可尝试非递归地向下访问kd树。
##注:kd_tree可以是根节点,也可以不是根节点。
if kd_tree is None or kd_tree.has_visited is True:
#if(kd_tree is None):
# print("另一半区域为空。")
#else:
#print("另一半区域已经回溯过了。")
return
else:
## 向下访问kd树,并记录路径
tmp = kd_tree
while (tmp is not None):
charac_dim = tmp.charac_dim
##若目标点x当前维的坐标大于切分点的坐标,则移动到右节点。
if(new_sample[charac_dim] >= train_dataset_x[tmp.split_instance][charac_dim]):
self.route.append(tmp)
tmp = tmp.right_child
else:
self.route.append(tmp)
tmp = tmp.left_child
if(tmp is None):
if(self.route[-1].left_child is not None):
tmp = self.route[-1].left_child
elif(self.route[-1].right_child is not None):
tmp = self.route[-1].right_child
if (self.lp_dis(train_dataset_x[self.route[-1].split_instance], new_sample) < self.low_dist):
self.segmentation_sample = self.route[-1].split_instance
self.low_dist = self.lp_dis(train_dataset_x[self.segmentation_sample], new_sample)
self.has_calculate = np.concatenate((self.has_calculate,[train_dataset_x[self.route[-1].split_instance]]),axis=0)
return
def show_route(self):
if(len(self.route) == 0):
print("Route Empty!\\n")
else:
for i in self.route:
if(i is None):
print("None"," ",end="")
else:
print(i.split_instance," ",end="")
print("\\n")
def tracking(self,new_sample):
while True:
pre = self.route.pop()
pre.has_visited = True
if (len(self.route) == 0):
break
cur = self.route[-1]
## a.如果该结点保存的实例点比当前的最近点距离目标更近,则以该实例点为“当前最近点”。
self.has_calculate = np.concatenate((self.has_calculate, [train_dataset_x[cur.split_instance]]),axis=0)
if (self.lp_dis(train_dataset_x[cur.split_instance], new_sample) < self.low_dist):
self.segmentation_sample = cur.split_instance
self.low_dist = self.lp_dis(train_dataset_x[cur.split_instance], new_sample)
another_area = cur.left_child if (pre == cur.right_child) else cur.right_child
##父节点分割的另一半是否存在更近的点?
## b.当前最近点一定存在于该结点一个子节点对应的区域。检查该子节点的父节点的另一子节点对应的区域是否有更近的点。
## 判断超球面是否能与超平面相交
## 以目标点为球心,以目标点与“当前最近点”间的距离为半径的超球体
## 半径:radius
radius = self.low_dist
## 超球面球心到超平面的距离:dis
dis = abs(new_sample[cur.charac_dim] - train_dataset_x[cur.split_instance][cur.charac_dim])
if (radius > dis):
# print("超球面与超平面相交,看另一半区域\\n")
self.search(train_dataset_x,another_area,new_sample)
else:
# print("不相交\\n")
continue
def back_tracking(self,new_sample):
##预测样本输入维度和训练集不一致
if(new_sample.size != train_dataset_x[0].size):
print("Improper input!\\n")
else:
self.search(train_dataset_x, self.kd_tree, new_sample)
self.tracking(new_sample=new_sample)
print("kd树求出的最邻近点为", self.segmentation_sample, "号样本点",train_dataset_x[self.segmentation_sample]," ")
print("对应kd树求出的最短距离为", self.low_dist, "\\n")
return
k = k_neighbour()
test_data = np.array([30,50,70])
k.has_calculate = [test_data]
k.Build_Tree(train_dataset_x=train_dataset_x)
k.back_tracking(new_sample=test_data)
true_low_dist = float("inf")
index = -1
for i in range(len(train_dataset_x)):
if(k.lp_dis(train_dataset_x[i],test_data)<true_low_dist):
true_low_dist = k.lp_dis(train_dataset_x[i],test_data)
index = i
print("真实结果样本为: ",index,"号样本点",train_dataset_x[index])
print("真实的最短距离为: ",true_low_dist,"\\n")
## 以下代码仅当特征空间为二维时可用。若特征空间不是二维,请删除以下代码。
# fig, ax = plt.subplots()
# ax.scatter(train_dataset_x[:,0],
# train_dataset_x[:,1],
# c = "blue",label="sample_point")
# ax.scatter(k.has_calculate[:,0],k.has_calculate[:,1],label="has_calculate",c = "orange",alpha = 1)
# ax.scatter(test_data[0],test_data[1],c = "red",label="target_sample",alpha = 1)
# ax.scatter(train_dataset_x[k.segmentation_sample][0],train_dataset_x[k.segmentation_sample][1],c = "green",label = "nearest",alpha = 1)
# box = ax.get_position()
# ax.set_position([box.x0, box.y0+0.05, box.width , box.height])
# ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),ncol=2)
# plt.show()
以上代码在特征空间中随机了10000个样本点,特征空间为三维
运行结果:
结果正确。
假设特征空间为二维,可直观展示
橙色点为搜索的结点
蓝色点为所有样本点
红色点为目标点
绿色点为最近邻点。
以上是关于机器学习复现2.非递归法构造并搜索kd树的主要内容,如果未能解决你的问题,请参考以下文章