Redis 底层数据结构
Posted 楚兴
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis 底层数据结构相关的知识,希望对你有一定的参考价值。
简单动态字符串1
每个sds.h/sdshdr结构表示一个SDS值:
struct sdshdr
//记录buf数组中已使用字节的数量
//等于SDS所保存字符串的长度
int len;
//记录buf数组中未使用字节的数量
int free;
//字节数组,用于保存字符串
char buf[];
;
SDS与C字符串的区别2
- 常数时间复杂度获取字符串长度
- 杜绝缓冲区溢出
- 减少修改字符串带来的内存重分配次数(空间预分配、惰性空间释放)
- 二进制安全
- 兼容部分C字符串函数
链表
当一个列表键包含了数量比较多的元素,又或者列表中包含的元素都是比较长的字符串时,Redis就会使用链表作为列表键的底层实现。
每个链表节点使用一个adlist.h/listNode结构来表示:
typedef struct listNode
// 前置节点
struct listNode * prev;
// 后置节点
struct listNode * next;
//节点的值
void * value;
listNode;
每个链表节点由一个listNode结构来表示,每个节点都有一个指向前置节点和后置节点的指针,所以Redis的链表实现是双端链表。
每个链表使用一个list结构来表示,这个结构带有表头节点指针、表尾节点指针,以及链表长度等信息。
因为链表表头节点的前置节点和表尾节点的后置节点都指向NULL,所以Redis的链表实现是无环链表。
虽然仅仅使用多个listNode结构就可以组成链表,但使用adlist.h/list来持有链表的话,操作起来会更方便:
typedef struct list
//
表头节点
listNode * head;
//
表尾节点
listNode * tail;
//
链表所包含的节点数量
unsigned long len;
//
节点值复制函数
void *(*dup)(void *ptr);
//
节点值释放函数
void (*free)(void *ptr);
//
节点值对比函数
int (*match)(void *ptr,void *key);
list;
通过为链表设置不同的类型特定函数,Redis的链表可以用于保存各种不同类型的值。
字典
字典,又称为符号表(symbol table)、关联数组(associative array)或映射(map),是一种用于保存键值对(key-value pair)的抽象数据结构。
当一个哈希键包含的键值对比较多,又或者键值对中的元素都是比较长的字符串时,Redis就会使用字典作为哈希键的底层实现。
Redis字典所使用的哈希表由dict.h/dictht结构定义:
typedef struct dictht
//哈希表数组
dictEntry **table;
//哈希表大小
unsigned long size;
//哈希表大小掩码,用于计算索引值
//总是等于size-1
unsigned long sizemask;
//该哈希表已有节点的数量
unsigned long used;
dictht;
table属性是一个数组,数组中的每个元素都是一个指向dict.h/dictEntry结构的指针,每个dictEntry结构保存着一个键值对。size属性记录了哈希表的大小,也即是table数组的大小,而used属性则记录了哈希表目前已有节点(键值对)的数量。sizemask属性的值总是等于size-1,这个属性和哈希值一起决定一个键应该被放到table数组的哪个索引上面。
哈希表节点使用dictEntry结构表示,每个dictEntry结构都保存着一个键值对:
typedef struct dictEntry
//键
void *key;
//值
union
void *val;
uint64_tu64;
int64_ts64;
v;
//指向下个哈希表节点,形成链表
struct dictEntry *next;
dictEntry;
key属性保存着键值对中的键,而v属性则保存着键值对中的值,其中键值对的值可以是一个指针,或者是一个uint64_t整数,又或者是一个int64_t整数。next属性是指向另一个哈希表节点的指针,这个指针可以将多个哈希值相同的键值对连接在一次,以此来解决键冲突(collision)的问题。
Redis中的字典由dict.h/dict结构表示:
typedef struct dict
//类型特定函数
dictType *type;
//私有数据
void *privdata;
//哈希表
dictht ht[2];
// rehash索引
//当rehash不在进行时,值为-1
in trehashidx; /* rehashing not in progress if rehashidx == -1 */
dict;
type属性和privdata属性是针对不同类型的键值对,为创建多态字典而设置的:
- type属性是一个指向dictType结构的指针,每个dictType结构保存了一簇用于操作特定类型键值对的函数,Redis会为用途不同的字典设置不同的类型特定函数。
- 而privdata属性则保存了需要传给那些类型特定函数的可选参数。
typedef struct dictType
//计算哈希值的函数
unsigned int (*hashFunction)(const void *key);
//复制键的函数
void *(*keyDup)(void *privdata, const void *key);
//复制值的函数
void *(*valDup)(void *privdata, const void *obj);
//对比键的函数
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
//销毁键的函数
void (*keyDestructor)(void *privdata, void *key);
//销毁值的函数
void (*valDestructor)(void *privdata, void *obj);
dictType;
ht属性是一个包含两个项的数组,数组中的每个项都是一个dictht哈希表,一般情况下,字典只使用ht[0]哈希表,ht[1]哈希表只会在对ht[0]哈希表进行rehash时使用。除了ht[1]之外,另一个和rehash有关的属性就是rehashidx,它记录了rehash目前的进度,如果目前没有在进行rehash,那么它的值为-1。
当要将一个新的键值对添加到字典里面时,程序需要先根据键值对的键计算出哈希值和索引值,然后再根据索引值,将包含新键值对的哈希表节点放到哈希表数组的指定索引上面。
Redis计算哈希值和索引值的方法如下:
#使用字典设置的哈希函数,计算键key的哈希值
hash = dict->type->hashFunction(key);
#使用哈希表的sizemask属性和哈希值,计算出索引值
#根据情况不同,ht[x]可以是ht[0]或者ht[1]
index = hash & dict->ht[x].sizemask;
Redis的哈希表使用链地址法(separate chaining)来解决键冲突,每个哈希表节点都有一个next指针,多个哈希表节点可以用next指针构成一个单向链表,被分配到同一个索引上的多个节点可以用这个单向链表连接起来,这就解决了键冲突的问题。
rehash
根据BGSAVE命令或BGREWRITEAOF命令是否正在执行,服务器执行扩展操作所需的负载因子并不相同,这是因为在执行BGSAVE命令或BGREWRITEAOF命令的过程中,Redis需要创建当前服务器进程的子进程,而大多数操作系统都采用写时复制(copy-on-write)技术来优化子进程的使用效率,所以在子进程存在期间,服务器会提高执行扩展操作所需的负载因子,从而尽可能地避免在子进程存在期间进行哈希表扩展操作,这可以避免不必要的内存写入操作,最大限度地节约内存。
为了避免rehash对服务器性能造成影响,服务器不是一次性将ht[0]里面的所有键值对全部rehash到ht[1],而是分多次、渐进式地将ht[0]里面的键值对慢慢地rehash到ht[1]。
哈希表渐进式rehash的详细步骤:
- 为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表。
- 在字典中维持一个索引计数器变量rehashidx,并将它的值设置为0,表示rehash工作正式开始。
- 在rehash进行期间,每次对字典执行添加、删除、查找或者更新操作时,程序除了执行指定的操作以外,还会顺带将ht[0]哈希表在rehashidx索引上的所有键值对rehash到ht[1],当rehash工作完成之后,程序将rehashidx属性的值增一。
- 随着字典操作的不断执行,最终在某个时间点上,ht[0]的所有键值对都会被rehash至ht[1],这时程序将rehashidx属性的值设为-1,表示rehash操作已完成。渐进式rehash的好处在于它采取分而治之的方式,将rehash键值对所需的计算工作均摊到对字典的每个添加、删除、查找和更新操作上,从而避免了集中式rehash而带来的庞大计算量。
因为在进行渐进式rehash的过程中,字典会同时使用ht[0]和ht[1]两个哈希表,所以在渐进式rehash进行期间,字典的删除(delete)、查找(find)、更新(update)等操作会在两个哈希表上进行。例如,要在字典里面查找一个键的话,程序会先在ht[0]里面进行查找,如果没找到的话,就会继续到ht[1]里面进行查找,诸如此类。
另外,在渐进式rehash执行期间,新添加到字典的键值对一律会被保存到ht[1]里面,而ht[0]则不再进行任何添加操作,这一措施保证了ht[0]包含的键值对数量会只减不增,并随着rehash操作的执行而最终变成空表。
跳跃表
跳跃表(skiplist)是一种有序数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。跳跃表支持平均O(logN)、最坏O(N)复杂度的节点查找,还可以通过顺序性操作来批量处理节点。在大部分情况下,跳跃表的效率可以和平衡树相媲美,并且因为跳跃表的实现比平衡树要来得更为简单,所以有不少程序都使用跳跃表来代替平衡树。Redis使用跳跃表作为有序集合键的底层实现之一,如果一个有序集合包含的元素数量比较多,又或者有序集合中元素的成员(member)是比较长的字符串时,Redis就会使用跳跃表来作为有序集合键的底层实现。
跳跃表节点的实现由redis.h/zskiplistNode结构定义:
typedef struct zskiplistNode
//层
struct zskiplistLevel
//前进指针
struct zskiplistNode *forward;
//跨度
unsigned int span;
level[];
//后退指针
struct zskiplistNode *backward;
//分值
double score;
//成员对象
robj *obj;
zskiplistNode;
每次创建一个新跳跃表节点的时候,程序都根据幂次定律(power law,越大的数出现的概率越小)随机生成一个介于1和32之间的值作为level数组的大小,这个大小就是层的“高度”。
跨度(span)实际上是用来计算排位(rank)的:在查找某个节点的过程中,将沿途访问过的所有层的跨度累计起来,得到的结果就是目标节点在跳跃表中的排位。
节点的后退指针(backward属性)用于从表尾向表头方向访问节点:跟可以一次跳过多个节点的前进指针不同,因为每个节点只有一个后退指针,所以每次只能后退至前一个节点。
zskiplist结构的定义如下:
typedef struct zskiplist
//表头节点和表尾节点
structz skiplistNode *header, *tail;
//表中节点的数量
unsigned long length;
//表中层数最大的节点的层数
int level;
zskiplist;
整数集合
整数集合(intset)是集合键的底层实现之一,当一个集合只包含整数值元素,并且这个集合的元素数量不多时,Redis就会使用整数集合作为集合键的底层实现。
每个intset.h/intset结构表示一个整数集合:
typedef struct intset
//编码方式
uint32_t encoding;
//集合包含的元素数量
uint32_t length;
//保存元素的数组
int8_t contents[];
intset;
contents数组是整数集合的底层实现:整数集合的每个元素都是contents数组的一个数组项(item),各个项在数组中按值的大小从小到大有序地排列,并且数组中不包含任何重复项。
因为引发升级的新元素的长度总是比整数集合现有所有元素的长度都大,所以这个新元素的值要么就大于所有现有元素,要么就小于所有现有元素:
要让一个数组可以同时保存int16_t、int32_t、int64_t三种类型的值,最简单的做法就是直接使用int64_t类型的数组作为整数集合的底层实现。不过这样一来,即使添加到整数集合里面的都是int16_t类型或者int32_t类型的值,数组都需要使用int64_t类型的空间去保存它们,从而出现浪费内存的情况。而整数集合现在的做法既可以让集合能同时保存三种不同类型的值,又可以确保升级操作只会在有需要的时候进行,这可以尽量节省内存。
整数集合不支持降级操作,一旦对数组进行了升级,编码就会一直保持升级后的状态。
压缩列表
压缩列表(ziplist)是列表键和哈希键的底层实现之一。当一个列表键只包含少量列表项,并且每个列表项要么就是小整数值,要么就是长度比较短的字符串,那么Redis就会使用压缩列表来做列表键的底层实现。
压缩列表是Redis为了节约内存而开发的,是由一系列特殊编码的连续内存块组成的顺序型(sequential)数据结构。一个压缩列表可以包含任意多个节点(entry),每个节点可以保存一个字节数组或者一个整数值。
ziplist的组成部分:
| zlbytes | ztail | zlen | entry1 | entry2 | ... | entryN | zlend |
每个压缩列表节点都由previous_entry_length、encoding、content三个部分组成:
| previous_entry_length | encoding | content |
添加新节点到压缩列表,或者从压缩列表中删除节点,可能会引发连锁更新操作,但这种操作出现的几率并不高。
尽管连锁更新的复杂度较高,但它真正造成性能问题的几率是很低的:
- 首先,压缩列表里要恰好有多个连续的、长度介于250字节至253字节之间的节点,连锁更新才有可能被引发,在实际中,这种情况并不多见;-
- 其次,即使出现连锁更新,但只要被更新的节点数量不多,就不会对性能造成任何影响:比如说,对三五个节点进行连锁更新是绝对不会影响性能的;
《Redis设计与实现》 ↩︎
以上是关于Redis 底层数据结构的主要内容,如果未能解决你的问题,请参考以下文章