CartoonGAN论文复现:如何将图像动漫化

Posted 华为云开发者联盟

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CartoonGAN论文复现:如何将图像动漫化相关的知识,希望对你有一定的参考价值。

摘要:本案例是 CartoonGAN: Generative Adversarial Networks for Photo Cartoonization的论文复现案例。

本文分享自华为云社区《cartoongan 图像动漫化》,作者: HWCloudAI 。

本案例是 CartoonGAN: Generative Adversarial Networks for Photo Cartoonization的论文复习案例。在拷贝数据之后,将你想动漫化的图像放到cartoongan-pytorch/test_img/文件夹下,运行后面代码即可。

可以切换不同生成风格,Hosoda/Shinkai/Paprika/Hayao

参考:https://github.com/venture-anime/cartoongan-pytorch

拷贝代码和数据

import moxing as mox
mox.file.copy_parallel('obs://obs-aigallery-zc/clf/code/cartoongan-pytorch','cartoongan-pytorch')

%cd cartoongan-pytorch

运行代码

import torch
import os
import numpy as np
import torchvision.utils as vutils
from PIL import Image
import torchvision.transforms as transforms
from torch.autograd import Variable
import matplotlib.pyplot as plt
from network.Transformer import Transformer
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", default="test_img")
parser.add_argument("--load_size", default=1280)
parser.add_argument("--model_path", default="./pretrained_model")
parser.add_argument("--style", default="Hosoda") # 在这里切换风格, Hosoda/Shinkai/Paprika/Hayao
parser.add_argument("--output_dir", default="test_output")
parser.add_argument("--gpu", type=int, default=0)
# opt = parser.parse_args()
opt, unknown = parser.parse_known_args()
valid_ext = [".jpg", ".png", ".jpeg"]
# setup
if not os.path.exists(opt.input_dir):
 os.makedirs(opt.input_dir)
if not os.path.exists(opt.output_dir):
 os.makedirs(opt.output_dir)
# load pretrained model
model = Transformer()
model.load_state_dict(
 torch.load(os.path.join(opt.model_path, opt.style + "_net_G_float.pth"))
)
model.eval()
disable_gpu = opt.gpu == -1 or not torch.cuda.is_available()
if disable_gpu:
 print("CPU mode")
 model.float()
else:
 print("GPU mode")
 model.cuda()
for i,files in enumerate(os.listdir(opt.input_dir)):
 ext = os.path.splitext(files)[1]
 if ext not in valid_ext:
 continue
 # load image
 input_image = Image.open(os.path.join(opt.input_dir, files)).convert("RGB")
 input_image = np.asarray(input_image)
 # RGB -> BGR
 input_image = input_image[:, :, [2, 1, 0]]
 input_image = transforms.ToTensor()(input_image).unsqueeze(0)
 # preprocess, (-1, 1)
 input_image = -1 + 2 * input_image
 if disable_gpu:
 input_image = Variable(input_image).float()
 else:
 input_image = Variable(input_image).cuda()
 # forward
 output_image = model(input_image)
 output_image = output_image[0]
 # BGR -> RGB
 output_image = output_image[[2, 1, 0], :, :]
 output_image = output_image.data.cpu().float() * 0.5 + 0.5
 # save
 vutils.save_image(
 output_image,
 os.path.join(opt.output_dir, files[:-4] + "_" + opt.style + ".jpg"),
 )
    original = np.array(Image.open(os.path.join(opt.input_dir, files)))
    style = np.array(Image.open(os.path.join(opt.output_dir, files[:-4] + "_" + opt.style + ".jpg")))
 plt.figure(figsize=(20,20)) # 显示缩放比例
 plt.subplot(i+1,2,1)
 plt.imshow(original)
 plt.subplot(i+1,2,2)
 plt.imshow(style)
 plt.show()
print("Done!")

点击关注,第一时间了解华为云新鲜技术~

 

以上是关于CartoonGAN论文复现:如何将图像动漫化的主要内容,如果未能解决你的问题,请参考以下文章

AnimeGANv2:照片动漫化

AnimeGANv2:现实图片动漫化

属性分解 GAN 复现 实现可控人物图像合成

OctConv:八度卷积复现

使用百度AI平台图像识别-人脸动漫化与黑白图片上色(PHP)

CycleGAN及非监督条件图像生成技术简介