Leetcode 1671. Minimum Number of Removals to Make Mountain Array
Posted SnailTyan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Leetcode 1671. Minimum Number of Removals to Make Mountain Array相关的知识,希望对你有一定的参考价值。
文章作者:Tyan
博客:noahsnail.com | CSDN | 简书
1. Description
2. Solution
**解析:**Version 1,分别以数组中的元素作为中心点,在左右两侧分别求最长递增子序列,根据左右两侧的最长递增子序列的长度求出山脉的长度,则要删除的元素个数为数组长度减去最长的山脉长度,速度太慢。Version 2在Version 1的基础上进行了优化,分别求出数组正序和逆序各个位置的最长递增子序列,然后跟Version 1类似,累加左右对应位置的最长递增子序列的长度,即为山脉的长度,则要删除的元素个数为数组长度减去最长的山脉长度,速度明显有了大幅提升。
- Version 1
class Solution:
def minimumMountainRemovals(self, nums: List[int]) -> int:
n = len(nums)
maximum = 0
for index in range(1, n - 1):
left = [nums[index]]
for i in range(index - 1, -1, -1):
if nums[i] >= nums[index] or nums[i] == left[0]:
continue
elif nums[i] < left[0]:
bisect.insort(left, nums[i])
else:
pos = bisect.bisect(left, nums[i])
left[pos-1] = nums[i]
if len(left) < 2:
continue
right = [nums[index]]
for i in range(index+1, n):
if nums[i] >= nums[index] or nums[i] == right[0]:
continue
if nums[i] < right[0]:
bisect.insort(right, nums[i])
else:
pos = bisect.bisect(right, nums[i])
right[pos-1] = nums[i]
if len(right) > 1:
maximum = max(maximum, len(left) + len(right) - 1)
return n - maximum
- Version 2
class Solution:
def minimumMountainRemovals(self, nums: List[int]) -> int:
n = len(nums)
maximum = 0
left = self.LIS(nums)
right = self.LIS(nums[::-1])
for i in range(n):
if left[i] > 1 and right[n-i-1] > 1:
maximum = max(maximum, left[i] + right[n-i-1] - 1)
return n - maximum
def LIS(self, nums):
n = len(nums)
dp = [1] * n
arr = [nums[0]]
for i in range(1, n):
if nums[i] > arr[-1]:
arr.append(nums[i])
else:
pos = bisect.bisect_left(arr, nums[i])
arr[pos] = nums[i]
dp[i] = len(arr)
return dp
Reference
以上是关于Leetcode 1671. Minimum Number of Removals to Make Mountain Array的主要内容,如果未能解决你的问题,请参考以下文章
Leetcode-462 Minimum Moves to Equal Array Elements II(最少移动次数使数组元素相等 II)