Linux下5种IO模型以及阻塞/非阻塞/同步/异步区别

Posted yxtxiaotian

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux下5种IO模型以及阻塞/非阻塞/同步/异步区别相关的知识,希望对你有一定的参考价值。

目录

1. 引言

2. Linux下的五种I/O模型

2.1 I/O发生时涉及的对象和阶段

2.2 阻塞I/O模型(blocking I/O) 

2.3 非阻塞I/O模型(non-blocking IO)

2.4 I/O复用模型(I/O multiplexing)

2.5 信号驱动I/O模型(Signal-driven I/O)

2.6 异步I/O模型(Asynchronous I/O)

2.7 5种I/O模型比较

3. 结语

4. 扩展:select、poll、epoll简介

4.1 select:

4.2 poll:

4.3 epoll:

4.4 select、poll、epoll 区别总结:


1. 引言

同步(synchronous) I/O和异步(asynchronous) I/O,阻塞(blocking) I/O和非阻塞(non-blocking)I/O分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous I/O和non-blocking I/O是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,我先限定一下本文的上下文。

本文讨论的背景是Linux环境下的network I/O。

本文最重要的参考文献是Richard Stevens的“UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking ”,6.2节“I/O Models ”,Stevens在这节中详细说明了各种I/O的特点和区别,如果英文够好的话,推荐直接阅读。Stevens的文风是有名的深入浅出,所以不用担心看不懂。本文中的流程图也是截取自参考文献。
 

2. Linux下的五种I/O模型

  1. 阻塞I/O(blocking I/O)
  2. 非阻塞I/O (nonblocking I/O)
  3. I/O复用(select 和poll) (I/O multiplexing)
  4. 信号驱动I/O (signal driven I/O (SIGIO))
  5. 异步I/O (asynchronous I/O (the POSIX aio_functions))

Tip:前四种都是同步,只有最后一种才是异步I/O。

 

2.1 I/O发生时涉及的对象和阶段

对于一个network I/O (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个I/O的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:

  •  1 等待数据准备 (Waiting for the data to be ready)
  •  2 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

记住这两点很重要,因为这些I/O Model的区别就是在两个阶段上各有不同的情况。
 

2.2 阻塞I/O模型(blocking I/O) 

在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

当用户进程调用了recvfrom这个系统调用,kernel就开始了I/O的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel系统缓冲区中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。所以,blocking IO的特点就是在I/O执行的两个阶段都被block了。

当使用socket()函数和WSASocket()函数创建套接字时,默认的套接字都是阻塞的。这意味着当调用Windows Sockets API不能立即完成时,线程处于等待状态,直到操作完成。

并不是所有Windows Sockets API以阻塞套接字为参数调用都会发生阻塞。例如,以阻塞模式的套接字为参数调用bind()、listen()函数时,函数会立即返回。将可能阻塞套接字的Windows Sockets API调用分为以下四种:

  1.     输入操作: recv()、recvfrom()、WSARecv()和WSARecvfrom()函数。以阻塞套接字为参数调用该函数接收数据。如果此时套接字缓冲区内没有数据可读,则调用线程在数据到来前一直睡眠。
  2.     输出操作: send()、sendto()、WSASend()和WSASendto()函数。以阻塞套接字为参数调用该函数发送数据。如果套接字缓冲区没有可用空间,线程会一直睡眠,直到有空间。
  3.     接受连接:accept()和WSAAcept()函数。以阻塞套接字为参数调用该函数,等待接受对方的连接请求。如果此时没有连接请求,线程就会进入睡眠状态。
  4.    外出连接:connect()和WSAConnect()函数。对于TCP连接,客户端以阻塞套接字为参数,调用该函数向服务器发起连接。该函数在收到服务器的应答前,不会返回。这意味着TCP连接总会等待至少到服务器的一次往返时间。

使用阻塞模式的套接字,开发网络程序比较简单,容易实现。当希望能够立即发送和接收数据,且处理的套接字数量比较少的情况下,使用阻塞模式来开发网络程序比较合适。

阻塞模式套接字的不足表现为,在大量建立好的套接字线程之间进行通信时比较困难。当使用“生产者-消费者”模型开发网络程序时,为每个套接字都分别分配一个读线程、一个处理数据线程和一个用于同步的事件,那么这样无疑加大系统的开销。其最大的缺点是当希望同时处理大量套接字时,将无从下手,其扩展性很差。

 

2.3 非阻塞I/O模型(non-blocking IO

linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。所以,用户进程其实是需要不断的主动询问kernel数据好了没有

我们把一个SOCKET接口设置为非阻塞就是告诉内核,当所请求的I/O操作无法完成时,不要将进程睡眠,而是返回一个错误。这样我们的I/O操作函数将不断的测试数据是否已经准备好,如果没有准备好,继续测试,直到数据准备好为止。在这个不断测试的过程中,会大量的占用CPU的时间。

当使用socket()函数和WSASocket()函数创建套接字时,默认都是阻塞的。在创建套接字之后,通过调用ioctlsocket()函数,将该套接字设置为非阻塞模式。Linux下的函数是:fcntl()。.

套接字设置为非阻塞模式后,在调用Windows Sockets API函数时,调用函数会立即返回。大多数情况下,这些函数调用都会调用“失败”,并返回WSAEWOULDBLOCK错误代码。说明请求的操作在调用期间内没有时间完成。通常,应用程序需要重复调用该函数,直到获得成功返回代码。

需要说明的是并非所有的Windows Sockets API在非阻塞模式下调用,都会返回WSAEWOULDBLOCK错误。例如,以非阻塞模式的套接字为参数调用bind()函数时,就不会返回该错误代码。当然,在调用WSAStartup()函数时更不会返回该错误代码,因为该函数是应用程序第一调用的函数,当然不会返回这样的错误代码。

要将套接字设置为非阻塞模式,除了使用ioctlsocket()函数之外,还可以使用WSAAsyncselect()和WSAEventselect()函数。当调用该函数时,套接字会自动地设置为非阻塞方式。

由于使用非阻塞套接字在调用函数时,会经常返回WSAEWOULDBLOCK错误。所以在任何时候,都应仔细检查返回代码并作好对“失败”的准备。应用程序连续不断地调用这个函数,直到它返回成功指示为止。上面的程序清单中,在While循环体内不断地调用recv()函数,以读入1024个字节的数据。这种做法很浪费系统资源。

 

2.4 I/O复用模型(I/O multiplexing

I/O multiplexing这个词可能有点陌生,但是如果我说select,poll、epoll,大概就都能明白了。有些地方也称这种I/O方式为event driven I/O,也是实际中使用最多的一种I/O模型。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的I/O。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。

这个图和blocking I/O的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking I/O只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking I/O的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)

在I/O multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket I/O给block。

 

2.5 信号驱动I/O模型(Signal-driven I/O

首先我们允许套接口进行信号驱动I/O,并安装一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个SIGIO信号,可以在信号处理函数中调用I/O操作函数处理数据。(signal driven I/O在实际中并不常用)

 

2.6 异步I/O模型(Asynchronous I/O

linux下的asynchronous IO其实用得很少。先看一下它的流程:

用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。
 

2.7 5种I/O模型比较

经过上面的介绍,会发现non-blocking I/O和asynchronous I/O的区别还是很明显的。在non-blocking I/O中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous I/O则完全不同。它就像是用户进程将整个I/O操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查I/O操作的状态,也不需要主动的去拷贝数据。
 

3. 结语

到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:

blocking和non-blocking的区别在哪??

synchronous IO和asynchronous IO的区别在哪??

先回答最简单的这个:blocking VS non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

再说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:

A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes;
An asynchronous I/O operation does not cause the requesting process to be blocked; 

两者的区别就在于synchronous I/O做”I/O operation”的时候会将process阻塞。按照这个定义,之前所述的blocking I/O,non-blocking I/O,I/O multiplexing,Signal-driven I/O都属于synchronous I/O。有人可能会说,non-blocking I/O并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”I/O operation”是指真实的I/O操作,就是例子中的recvfrom这个system call。non-blocking I/O在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous I/O则不一样,当进程发起I/O 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说I/O完成。在这整个过程中,进程完全没有被block。

 

4. 扩展:select、poll、epoll简介

epoll跟select都能提供多路I/O复用的解决方案。在现在的Linux内核里有都能够支持,其中epoll是Linux所特有,而select则应该是POSIX所规定,一般操作系统均有实现。

4.1 select:

select本质上是通过设置或者检查存放fd标志位的数据结构来进行下一步处理。这样所带来的缺点是:

(1)单个进程可监视的fd数量被限制,即能监听端口的大小有限:

  • 一般来说这个数目和系统内存关系很大,具体数目可以cat /proc/sys/fs/file-max察看。32位机默认是1024个。64位机默认是2048.

(2)对socket进行扫描时是线性扫描,即采用轮询的方法,效率较低

  • 当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。如果能给套接字注册某个回调函数,当他们活跃时,自动完成相关操作,那就避免了轮询,这正是epoll与kqueue做的。

(3)需要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大。

Tip:参见博文 select与阻塞/非阻塞IO

4.2 poll:

poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态,如果设备就绪则在设备等待队列中加入一项并继续遍历,如果遍历完所有fd后没有发现就绪设备,则挂起当前进程,直到设备就绪或者主动超时,被唤醒后它又要再次遍历fd。这个过程经历了多次无谓的遍历。

它没有最大连接数的限制,原因是它是基于链表来存储的,但是同样有一个缺点:

(1)大量的fd的数组被整体复制于用户态和内核地址空间之间,而不管这样的复制是不是有意义;

(2)poll还有一个特点是“水平触发”,如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd。

 

4.3 epoll:

epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就需态,并且只会通知一次。还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知。

epoll的优点:

(1)没有最大并发连接的限制,能打开的FD的上限远大于1024(1G的内存上能监听约10万个端口);
(2)效率提升,不是轮询的方式,不会随着FD数目的增加效率下降。只有活跃可用的FD才会调用callback函数

  • 即Epoll最大的优点就在于它只管你“活跃”的连接,而跟连接总数无关,因此在实际的网络环境中,Epoll的效率就会远远高于select和poll。

(3)内存拷贝,利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap减少复制开销

 

4.4 select、poll、epoll 区别总结:

1、支持一个进程所能打开的最大连接数

select

单个进程所能打开的最大连接数有FD_SETSIZE宏定义,其大小是32个整数的大小(在32位的机器上,大小就是32*32,同理64位机器上FD_SETSIZE为32*64),当然我们可以对进行修改,然后重新编译内核,但是性能可能会受到影响,这需要进一步的测试。

poll

poll本质上和select没有区别,但是它没有最大连接数的限制,原因是它是基于链表来存储的

epoll

虽然连接数有上限,但是很大,1G内存的机器上可以打开10万左右的连接,2G内存的机器可以打开20万左右的连接

2、FD剧增后带来的IO效率问题

select

因为每次调用时都会对连接进行线性遍历,所以随着FD的增加会造成遍历速度慢的“线性下降性能问题”。

poll

同上

epoll

因为epoll内核中实现是根据每个fd上的callback函数来实现的,只有活跃的socket才会主动调用callback,所以在活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题,但是所有socket都很活跃的情况下,可能会有性能问题。

3、 消息传递方式

select

内核需要将消息传递到用户空间,都需要内核拷贝动作

poll

同上

epoll

epoll通过内核和用户空间共享一块内存来实现的。

4、总结:

综上,在选择select,poll,epoll时要根据具体的使用场合以及这三种方式的自身特点:

1、表面上看epoll的性能最好,但是在连接数少并且连接都十分活跃的情况下,select和poll的性能可能比epoll好,毕竟epoll的通知机制需要很多函数回调。

2、select低效是因为每次它都需要轮询。但低效也是相对的,视情况而定,也可通过良好的设计改善

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

以上是关于Linux下5种IO模型以及阻塞/非阻塞/同步/异步区别的主要内容,如果未能解决你的问题,请参考以下文章

5种IO模型阻塞IO和非阻塞IO同步IO和异步IO

深入理解非阻塞同步IO和非阻塞异步IO

linux同步与异步阻塞与非阻塞概念以及五种IO模型

Linux五种IO模型

简述linux同步与异步阻塞与非阻塞概念以及五种IO模型

IO模型介绍 以及同步异步阻塞非阻塞的区别