POJ 3237 Tree(树链剖分)

Posted AC_Arthur

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 3237 Tree(树链剖分)相关的知识,希望对你有一定的参考价值。

题目链接:点击打开链接

思路:

对于树上的路径更新操作, 我们通常把他hash到线段上, 也就是树链剖分, 大概完全理解了吧, 存个代码。

对于该题的反转操作,  可以里用异或操作的性质来做标记。

细节参见代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <stack>
#include <ctime>
#include <bitset>
#include <cstdlib>
#include <cmath>
#include <set>
#include <list>
#include <deque>
#include <map>
#include <queue>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
typedef long double ld;
const double eps = 1e-6;
const double PI = acos(-1);
const int mod = 1000000000 + 7;
const int INF = 0x3f3f3f3f;
const int seed = 131;
const ll INF64 = ll(1e18);
const int maxn = 10000 + 10;
int T,n,m,tree_id = 0,minv[maxn<<2],maxv[maxn<<2], setv[maxn<<2],val[maxn];
struct node 
    int u, d;
    node(int u=0, int d=0):u(u),d(d) 
;
vector<node> g[maxn];
int pre[maxn]; /// x的父亲
int siz[maxn]; /// x的子树规模
int son[maxn]; /// x的重儿子
int dep[maxn]; /// x相对于根结点的深度
void dfs(int u, int fa) 
    siz[u] = 1;
    pre[u] = fa ;
    dep[u] = dep[fa] + 1;
    son[u] = 0;
    int len = g[u].size(), maxv = 0;
    for(int i = 0; i < len; i++) 
        int v = g[u][i].u;
        if(v == fa) continue;
        dfs(v, u);
        siz[u] += siz[v];
        if(siz[v] > maxv) 
            maxv = siz[v];
            son[u] = v;
        
    

int top[maxn]; /// 这条重链的头部
int pos[maxn]; /// x重标号后的标号
/// tree_idx 用以给所有边重标号
void build_tree(int u, int top_id) 
    top[u] = top_id;
    pos[u] = ++tree_id;
    if(son[u]) build_tree(son[u], top_id);
    int len = g[u].size();
    for(int i = 0; i < len; i++) 
        int v = g[u][i].u;
        if(v == pre[u]) continue;
        if(v != son[u]) 
            build_tree(v, v);
        
    

void pushup(int o) 
    minv[o] = min(minv[o<<1], minv[o<<1|1]);
    maxv[o] = max(maxv[o<<1], maxv[o<<1|1]);

void pushdown(int l, int r, int o) 
    if(l == r) return ;
    if(setv[o]) 
        setv[o] ^= 1;
        setv[o<<1] ^= 1;
        int t = minv[o<<1];
        minv[o<<1] = -maxv[o<<1];
        maxv[o<<1] = -t;
        setv[o<<1|1] ^= 1;
        t = minv[o<<1|1];
        minv[o<<1|1] = -maxv[o<<1|1];
        maxv[o<<1|1] = -t;
    

void build(int l, int r, int o) 
    minv[o] = INF;
    maxv[o] = -INF;
    setv[o] = 0;
    if(l == r) 
        minv[o] = maxv[o] = val[l];
        return ;
    
    int mid = (l + r) >> 1;
    build(l, mid, o<<1);
    build(mid+1, r, o<<1|1);
    pushup(o);

void update(int L, int R, int v, int l, int r, int o) 
    if(L <= l && r <= R) 
        if(v == INF) 
            setv[o] ^= 1;
            int t = minv[o]; minv[o] = -maxv[o]; maxv[o] = -t;
        
        else 
            minv[o] = maxv[o] = v; setv[o] = 0;
        
        return ;
    
    pushdown(l, r, o);
    int mid = (l + r) >> 1;
    if(L <= mid) update(L, R, v, l, mid, o<<1);
    if(mid < R) update(L, R, v, mid+1, r, o<<1|1);
    pushup(o);

int query(int L, int R, int l, int r, int o) 
    if(L <= l && r <= R) 
        return maxv[o];
    
    int mid = (l + r) >> 1;
    int ans = -INF;
    pushdown(l, r, o);
    if(L <= mid) ans = max(ans, query(L, R, l, mid, o<<1));
    if(mid < R) ans = max(ans, query(L, R, mid+1, r, o<<1|1));
    pushup(o);
    return ans;

int solve(int x, int y) 
    int res = -INF;
    while(top[x] != top[y]) 
        if(dep[top[x]] < dep[top[y]]) swap(x, y);
        res = max(res, query(pos[top[x]], pos[x], 1, n, 1));
        x = pre[top[x]];
    
    if(x == y) return res;
    if(dep[x] > dep[y]) swap(x, y);
    return max(res, query(pos[x]+1, pos[y], 1, n, 1));

void NEGATE(int x, int y) 
    while(top[x] != top[y]) 
        if(dep[top[x]] < dep[top[y]]) swap(x, y);
        update(pos[top[x]], pos[x], INF, 1, n, 1);
        x = pre[top[x]];
    
    if(x == y) return ;
    if(dep[x] > dep[y]) swap(x, y);
    update(pos[x]+1, pos[y], INF, 1, n, 1);

void init() 
    tree_id = 0;
    for(int i = 1; i <= n; i++) g[i].clear();

struct edge 
    int a, b, c;
e[maxn];
int main() 
    int T; scanf("%d", &T);
    while(T--) 
        scanf("%d", &n);
        init();
        for(int i = 1; i < n; i++) 
            scanf("%d%d%d", &e[i].a, &e[i].b, &e[i].c);
            g[e[i].a].push_back(node(e[i].b, e[i].c));
            g[e[i].b].push_back(node(e[i].a, e[i].c));
        
        dfs(1, 0);
        build_tree(1, 1);
        for(int i = 1; i < n; i++) 
            int a = e[i].a, b = e[i].b;
            if(dep[a] < dep[b]) swap(a, b);
            val[pos[a]] = e[i].c;
        
        build(1, n, 1);
        while(true) 
            char op[10]; scanf("%s", op);
            int a, b;
            if(op[0] != 'D') scanf("%d%d", &a, &b);
            if(op[0] == 'D') break;
            else if(op[0] == 'Q') 
                printf("%d\\n", solve(a, b));
            
            else if(op[0] == 'C') 
                int x = e[a].a, y = e[a].b;
                if(dep[x] < dep[y]) swap(x, y);
                update(pos[x], pos[x], b, 1, n, 1);
            
            else 
                NEGATE(a, b);
            
        
    
    return 0;



以上是关于POJ 3237 Tree(树链剖分)的主要内容,如果未能解决你的问题,请参考以下文章

POJ 3237 Tree (树链剖分 路径剖分 线段树的lazy标记)

(树链剖分+线段树)POJ - 3237 Tree

POJ 3237 Tree(树链剖分)

POJ3237Tree(树链剖分)

POJ3237-Tree (树链剖分,线段树区间更新+点更新+区间查询)

POJ 3723 Tree(树链剖分)