POJ 3237 Tree(树链剖分)
Posted AC_Arthur
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 3237 Tree(树链剖分)相关的知识,希望对你有一定的参考价值。
题目链接:点击打开链接
思路:
对于树上的路径更新操作, 我们通常把他hash到线段上, 也就是树链剖分, 大概完全理解了吧, 存个代码。
对于该题的反转操作, 可以里用异或操作的性质来做标记。
细节参见代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <stack>
#include <ctime>
#include <bitset>
#include <cstdlib>
#include <cmath>
#include <set>
#include <list>
#include <deque>
#include <map>
#include <queue>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
typedef long double ld;
const double eps = 1e-6;
const double PI = acos(-1);
const int mod = 1000000000 + 7;
const int INF = 0x3f3f3f3f;
const int seed = 131;
const ll INF64 = ll(1e18);
const int maxn = 10000 + 10;
int T,n,m,tree_id = 0,minv[maxn<<2],maxv[maxn<<2], setv[maxn<<2],val[maxn];
struct node
int u, d;
node(int u=0, int d=0):u(u),d(d)
;
vector<node> g[maxn];
int pre[maxn]; /// x的父亲
int siz[maxn]; /// x的子树规模
int son[maxn]; /// x的重儿子
int dep[maxn]; /// x相对于根结点的深度
void dfs(int u, int fa)
siz[u] = 1;
pre[u] = fa ;
dep[u] = dep[fa] + 1;
son[u] = 0;
int len = g[u].size(), maxv = 0;
for(int i = 0; i < len; i++)
int v = g[u][i].u;
if(v == fa) continue;
dfs(v, u);
siz[u] += siz[v];
if(siz[v] > maxv)
maxv = siz[v];
son[u] = v;
int top[maxn]; /// 这条重链的头部
int pos[maxn]; /// x重标号后的标号
/// tree_idx 用以给所有边重标号
void build_tree(int u, int top_id)
top[u] = top_id;
pos[u] = ++tree_id;
if(son[u]) build_tree(son[u], top_id);
int len = g[u].size();
for(int i = 0; i < len; i++)
int v = g[u][i].u;
if(v == pre[u]) continue;
if(v != son[u])
build_tree(v, v);
void pushup(int o)
minv[o] = min(minv[o<<1], minv[o<<1|1]);
maxv[o] = max(maxv[o<<1], maxv[o<<1|1]);
void pushdown(int l, int r, int o)
if(l == r) return ;
if(setv[o])
setv[o] ^= 1;
setv[o<<1] ^= 1;
int t = minv[o<<1];
minv[o<<1] = -maxv[o<<1];
maxv[o<<1] = -t;
setv[o<<1|1] ^= 1;
t = minv[o<<1|1];
minv[o<<1|1] = -maxv[o<<1|1];
maxv[o<<1|1] = -t;
void build(int l, int r, int o)
minv[o] = INF;
maxv[o] = -INF;
setv[o] = 0;
if(l == r)
minv[o] = maxv[o] = val[l];
return ;
int mid = (l + r) >> 1;
build(l, mid, o<<1);
build(mid+1, r, o<<1|1);
pushup(o);
void update(int L, int R, int v, int l, int r, int o)
if(L <= l && r <= R)
if(v == INF)
setv[o] ^= 1;
int t = minv[o]; minv[o] = -maxv[o]; maxv[o] = -t;
else
minv[o] = maxv[o] = v; setv[o] = 0;
return ;
pushdown(l, r, o);
int mid = (l + r) >> 1;
if(L <= mid) update(L, R, v, l, mid, o<<1);
if(mid < R) update(L, R, v, mid+1, r, o<<1|1);
pushup(o);
int query(int L, int R, int l, int r, int o)
if(L <= l && r <= R)
return maxv[o];
int mid = (l + r) >> 1;
int ans = -INF;
pushdown(l, r, o);
if(L <= mid) ans = max(ans, query(L, R, l, mid, o<<1));
if(mid < R) ans = max(ans, query(L, R, mid+1, r, o<<1|1));
pushup(o);
return ans;
int solve(int x, int y)
int res = -INF;
while(top[x] != top[y])
if(dep[top[x]] < dep[top[y]]) swap(x, y);
res = max(res, query(pos[top[x]], pos[x], 1, n, 1));
x = pre[top[x]];
if(x == y) return res;
if(dep[x] > dep[y]) swap(x, y);
return max(res, query(pos[x]+1, pos[y], 1, n, 1));
void NEGATE(int x, int y)
while(top[x] != top[y])
if(dep[top[x]] < dep[top[y]]) swap(x, y);
update(pos[top[x]], pos[x], INF, 1, n, 1);
x = pre[top[x]];
if(x == y) return ;
if(dep[x] > dep[y]) swap(x, y);
update(pos[x]+1, pos[y], INF, 1, n, 1);
void init()
tree_id = 0;
for(int i = 1; i <= n; i++) g[i].clear();
struct edge
int a, b, c;
e[maxn];
int main()
int T; scanf("%d", &T);
while(T--)
scanf("%d", &n);
init();
for(int i = 1; i < n; i++)
scanf("%d%d%d", &e[i].a, &e[i].b, &e[i].c);
g[e[i].a].push_back(node(e[i].b, e[i].c));
g[e[i].b].push_back(node(e[i].a, e[i].c));
dfs(1, 0);
build_tree(1, 1);
for(int i = 1; i < n; i++)
int a = e[i].a, b = e[i].b;
if(dep[a] < dep[b]) swap(a, b);
val[pos[a]] = e[i].c;
build(1, n, 1);
while(true)
char op[10]; scanf("%s", op);
int a, b;
if(op[0] != 'D') scanf("%d%d", &a, &b);
if(op[0] == 'D') break;
else if(op[0] == 'Q')
printf("%d\\n", solve(a, b));
else if(op[0] == 'C')
int x = e[a].a, y = e[a].b;
if(dep[x] < dep[y]) swap(x, y);
update(pos[x], pos[x], b, 1, n, 1);
else
NEGATE(a, b);
return 0;
以上是关于POJ 3237 Tree(树链剖分)的主要内容,如果未能解决你的问题,请参考以下文章
POJ 3237 Tree (树链剖分 路径剖分 线段树的lazy标记)