迁移学习花式Finetune方法大汇总

Posted fareise

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了迁移学习花式Finetune方法大汇总相关的知识,希望对你有一定的参考价值。

如果觉得我的算法分享对你有帮助,欢迎关注我的微信公众号“圆圆的算法笔记”,更多算法笔记和世间万物的学习记录~

迁移学习广泛地应用于NLP、CV等各种领域,通过在源域数据上学习知识,再迁移到下游其他目标任务上,提升目标任务上的效果。其中,Pretrain-Finetune(预训练+精调)模式是最为常见的一种迁移学习方法。例如NLP中的预训练Bert模型,通过在下游任务上Finetune即可取得比直接使用下游数据任务从零训练的效果要好得多。

虽然在预训练模型上Finetune能取得非常好的效果,我们经常使用Finetune方法,但是你是否有想过这种Finetune方法有没有什么优化方法?如何Finetune对最终效果好坏有非常大的影响。例如,在Finetune时我们会考虑要迁移预训练网络的哪些层,哪些层需要冻结,哪些层需要随着模型一起Finetune。实际应用时,我们往往需要尝试不同的迁移方法和Finetune策略来达到最优效果。目前学术界也有很多创新性较强的花式Finetune方法研究。本文介绍了来自2018年以来ICML、CVPR等顶会的7篇论文,总结了Finetune的四种类型招式,通过更科学的Finetune方式,提升迁移学习效果。

1. 招式1:使用Pretrain模型做约束

在Finetune阶段,如果我们可用于Finetune的目标任务数据量较少时,很有可能出现过拟合现象,严重影响模型效果;或者在Finetune过程中出现知识遗忘问题(catastrophic memory),把Pretrain阶段学到的有用知识遗忘࿰

以上是关于迁移学习花式Finetune方法大汇总的主要内容,如果未能解决你的问题,请参考以下文章

NLP中的绿色Finetune方法大汇总

左手攻击(ATT&CK),右手防御(Shield)|230种招式教你花式应对黑客攻击

论文泛读200通过适配器使用预训练语言模型进行稳健的迁移学习

论文泛读200通过适配器使用预训练语言模型进行稳健的迁移学习

NoisyTune: A Little Noise Can Help You Finetune Pretrained Language Models Better论文研读

大语言模型中的Finetune vs. prompt