Sqoop学习之路

Posted 常生果

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Sqoop学习之路相关的知识,希望对你有一定的参考价值。

 

正文

回到顶部

一、概述

sqoop 是 apache 旗下一款“Hadoop 和关系数据库服务器之间传送数据”的工具。

核心的功能有两个:

导入、迁入

导出、迁出

导入数据mysql,Oracle 导入数据到 Hadoop 的 HDFS、HIVE、HBASE 等数据存储系统

导出数据:从 Hadoop 的文件系统中导出数据到关系数据库 mysql 等 Sqoop 的本质还是一个命令行工具,和 HDFS,Hive 相比,并没有什么高深的理论。

sqoop:

工具:本质就是迁移数据, 迁移的方式:就是把sqoop的迁移命令转换成MR程序

hive

工具,本质就是执行计算,依赖于HDFS存储数据,把SQL转换成MR程序

回到顶部

二、工作机制

将导入或导出命令翻译成 MapReduce 程序来实现 在翻译出的 MapReduce 中主要是对 InputFormat 和 OutputFormat 进行定制

回到顶部

三、安装

1、前提概述

将来sqoop在使用的时候有可能会跟那些系统或者组件打交道?

HDFS, MapReduce, YARN, ZooKeeper, Hive, HBase, MySQL

sqoop就是一个工具, 只需要在一个节点上进行安装即可。

 

补充一点: 如果你的sqoop工具将来要进行hive或者hbase等等的系统和MySQL之间的交互

 

你安装的SQOOP软件的节点一定要包含以上你要使用的集群或者软件系统的安装包

 

补充一点: 将来要使用的azakban这个软件 除了会调度 hadoop的任务或者hbase或者hive的任务之外, 还会调度sqoop的任务

 

azkaban这个软件的安装节点也必须包含以上这些软件系统的客户端/2、

2、软件下载

下载地址http://mirrors.hust.edu.cn/apache/

sqoop版本说明

绝大部分企业所使用的sqoop的版本都是 sqoop1

sqoop-1.4.6 或者 sqoop-1.4.7 它是 sqoop1

sqoop-1.99.4----都是 sqoop2

此处使用sqoop-1.4.6版本sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

3、安装步骤

(1)上传解压缩安装包到指定目录

因为之前hive只是安装在hadoop3机器上,所以sqoop也同样安装在hadoop3机器上

[hadoop@hadoop3 ~]$ tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C apps/

(2)进入到 conf 文件夹,找到 sqoop-env-template.sh,修改其名称为 sqoop-env.sh cd conf

[hadoop@hadoop3 ~]$ cd apps/
[hadoop@hadoop3 apps]$ ls
apache-hive-2.3.3-bin  hadoop-2.7.5  hbase-1.2.6  sqoop-1.4.6.bin__hadoop-2.0.4-alpha  zookeeper-3.4.10
[hadoop@hadoop3 apps]$ mv sqoop-1.4.6.bin__hadoop-2.0.4-alpha/ sqoop-1.4.6
[hadoop@hadoop3 apps]$ cd sqoop-1.4.6/conf/
[hadoop@hadoop3 conf]$ ls
oraoop-site-template.xml  sqoop-env-template.sh    sqoop-site.xml
sqoop-env-template.cmd    sqoop-site-template.xml
[hadoop@hadoop3 conf]$ mv sqoop-env-template.sh sqoop-env.sh

(3)修改 sqoop-env.sh

[hadoop@hadoop3 conf]$ vi sqoop-env.sh 

export HADOOP_COMMON_HOME=/home/hadoop/apps/hadoop-2.7.5

#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/home/hadoop/apps/hadoop-2.7.5

#set the path to where bin/hbase is available
export HBASE_HOME=/home/hadoop/apps/hbase-1.2.6

#Set the path to where bin/hive is available
export HIVE_HOME=/home/hadoop/apps/apache-hive-2.3.3-bin

#Set the path for where zookeper config dir is
export ZOOCFGDIR=/home/hadoop/apps/zookeeper-3.4.10/conf

为什么在sqoop-env.sh 文件中会要求分别进行 common和mapreduce的配置呢???

在apache的hadoop的安装中;四大组件都是安装在同一个hadoop_home中的

但是在CDH, HDP中, 这些组件都是可选的。

在安装hadoop的时候,可以选择性的只安装HDFS或者YARN,

CDH,HDP在安装hadoop的时候,会把HDFS和MapReduce有可能分别安装在不同的地方。

(4)加入 mysql 驱动包到 sqoop1.4.6/lib 目录下

[hadoop@hadoop3 ~]$ cp mysql-connector-java-5.1.40-bin.jar apps/sqoop-1.4.6/lib/

(5)配置系统环境变量

[hadoop@hadoop3 ~]$ vi .bashrc 
#Sqoop
export SQOOP_HOME=/home/hadoop/apps/sqoop-1.4.6
export PATH=$PATH:$SQOOP_HOME/bin

保存退出使其立即生效

[hadoop@hadoop3 ~]$ source .bashrc 

(6)验证安装是否成功

 sqoop-version 或者 sqoop version

回到顶部

四、Sqoop的基本命令

基本操作

首先,我们可以使用 sqoop help 来查看,sqoop 支持哪些命令

[hadoop@hadoop3 ~]$ sqoop help
Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
18/04/12 13:37:19 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
usage: sqoop COMMAND [ARGS]

Available commands:
  codegen            Generate code to interact with database records
  create-hive-table  Import a table definition into Hive
  eval               Evaluate a SQL statement and display the results
  export             Export an HDFS directory to a database table
  help               List available commands
  import             Import a table from a database to HDFS
  import-all-tables  Import tables from a database to HDFS
  import-mainframe   Import datasets from a mainframe server to HDFS
  job                Work with saved jobs
  list-databases     List available databases on a server
  list-tables        List available tables in a database
  merge              Merge results of incremental imports
  metastore          Run a standalone Sqoop metastore
  version            Display version information

See 'sqoop help COMMAND' for information on a specific command.
[hadoop@hadoop3 ~]$ 

然后得到这些支持了的命令之后,如果不知道使用方式,可以使用 sqoop command 的方式 来查看某条具体命令的使用方式,比如:

 View Code

示例

列出MySQL数据有哪些数据库

[hadoop@hadoop3 ~]$ sqoop list-databases \\
> --connect jdbc:mysql://hadoop1:3306/ \\
> --username root \\
> --password root
Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
18/04/12 13:43:51 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
18/04/12 13:43:51 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
18/04/12 13:43:51 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
information_schema
hivedb
mysql
performance_schema
test
[hadoop@hadoop3 ~]$ 

列出MySQL中的某个数据库有哪些数据表:

 

[hadoop@hadoop3 ~]$ sqoop list-tables \\
--connect jdbc:mysql://hadoop1:3306/mysql \\
--username root \\
--password root

 

 View Code

创建一张跟mysql中的help_keyword表一样的hive表hk:

sqoop create-hive-table \\
--connect jdbc:mysql://hadoop1:3306/mysql \\
--username root \\
--password root \\
--table help_keyword \\
--hive-table hk

 

 View Code

回到顶部

五、Sqoop的数据导入

“导入工具”导入单个表从 RDBMS 到 HDFS。表中的每一行被视为 HDFS 的记录。所有记录 都存储为文本文件的文本数据(或者 Avro、sequence 文件等二进制数据) 

1、从RDBMS导入到HDFS中

语法格式

sqoop import (generic-args) (import-args)

常用参数

--connect <jdbc-uri> jdbc 连接地址
--connection-manager <class-name> 连接管理者
--driver <class-name> 驱动类
--hadoop-mapred-home <dir> $HADOOP_MAPRED_HOME
--help help 信息
-P 从命令行输入密码
--password <password> 密码
--username <username> 账号
--verbose 打印流程信息
--connection-param-file <filename> 可选参数

示例

普通导入:导入mysql库中的help_keyword的数据到HDFS上

导入的默认路径:/user/hadoop/help_keyword

sqoop import   \\
--connect jdbc:mysql://hadoop1:3306/mysql   \\
--username root  \\
--password root   \\
--table help_keyword   \\
-m 1

 View Code

查看导入的文件

[hadoop@hadoop4 ~]$ hadoop fs -cat /user/hadoop/help_keyword/part-m-00000

 

导入: 指定分隔符和导入路径

 

sqoop import   \\
--connect jdbc:mysql://hadoop1:3306/mysql   \\
--username root  \\
--password root   \\
--table help_keyword   \\
--target-dir /user/hadoop11/my_help_keyword1  \\
--fields-terminated-by '\\t'  \\
-m 2

 

导入数据:带where条件

sqoop import   \\
--connect jdbc:mysql://hadoop1:3306/mysql   \\
--username root  \\
--password root   \\
--where "name='STRING' " \\
--table help_keyword   \\
--target-dir /sqoop/hadoop11/myoutport1  \\
-m 1

 

查询指定列

sqoop import   \\
--connect jdbc:mysql://hadoop1:3306/mysql   \\
--username root  \\
--password root   \\
--columns "name" \\
--where "name='STRING' " \\
--table help_keyword  \\
--target-dir /sqoop/hadoop11/myoutport22  \\
-m 1
selct name from help_keyword where name = "string"

 

导入:指定自定义查询SQL

sqoop import   \\
--connect jdbc:mysql://hadoop1:3306/  \\
--username root  \\
--password root   \\
--target-dir /user/hadoop/myimport33_1  \\
--query 'select help_keyword_id,name from mysql.help_keyword where $CONDITIONS and name = "STRING"' \\
--split-by  help_keyword_id \\
--fields-terminated-by '\\t'  \\
-m 4

 

在以上需要按照自定义SQL语句导出数据到HDFS的情况下:
1、引号问题,要么外层使用单引号,内层使用双引号,$CONDITIONS的$符号不用转义, 要么外层使用双引号,那么内层使用单引号,然后$CONDITIONS的$符号需要转义
2、自定义的SQL语句中必须带有WHERE \\$CONDITIONS

2、把MySQL数据库中的表数据导入到Hive中

Sqoop 导入关系型数据到 hive 的过程是先导入到 hdfs,然后再 load 进入 hive

普通导入:数据存储在默认的default hive库中,表名就是对应的mysql的表名:

sqoop import   \\
--connect jdbc:mysql://hadoop1:3306/mysql   \\
--username root  \\
--password root   \\
--table help_keyword   \\
--hive-import \\
-m 1

导入过程

第一步:导入mysql.help_keyword的数据到hdfs的默认路径
第二步:自动仿造mysql.help_keyword去创建一张hive表, 创建在默认的default库中
第三步:把临时目录中的数据导入到hive表中

查看数据

[hadoop@hadoop3 ~]$ hadoop fs -cat /user/hive/warehouse/help_keyword/part-m-00000

指定行分隔符和列分隔符,指定hive-import,指定覆盖导入,指定自动创建hive表,指定表名,指定删除中间结果数据目录

sqoop import  \\
--connect jdbc:mysql://hadoop1:3306/mysql  \\
--username root  \\
--password root  \\
--table help_keyword  \\
--fields-terminated-by "\\t"  \\
--lines-terminated-by "\\n"  \\
--hive-import  \\
--hive-overwrite  \\
--create-hive-table  \\
--delete-target-dir \\
--hive-database  mydb_test \\
--hive-table new_help_keyword

 报错原因是hive-import 当前这个导入命令。 sqoop会自动给创建hive的表。 但是不会自动创建不存在的库

手动创建mydb_test数据块

hive> create database mydb_test;
OK
Time taken: 6.147 seconds
hive> 

之后再执行上面的语句没有报错

查询一下

select * from new_help_keyword limit 10;

 

上面的导入语句等价于

sqoop import  \\
--connect jdbc:mysql://hadoop1:3306/mysql  \\
--username root  \\
--password root  \\
--table help_keyword  \\
--fields-terminated-by "\\t"  \\
--lines-terminated-by "\\n"  \\
--hive-import  \\
--hive-overwrite  \\
--create-hive-table  \\ 
--hive-table  mydb_test.new_help_keyword  \\
--delete-target-dir

增量导入

执行增量导入之前,先清空hive数据库中的help_keyword表中的数据

truncate table help_keyword;

sqoop import   \\
--connect jdbc:mysql://hadoop1:3306/mysql   \\
--username root  \\
--password root   \\
--table help_keyword  \\
--target-dir /user/hadoop/myimport_add  \\
--incremental  append  \\
--check-column  help_keyword_id \\
--last-value 500  \\
-m 1

语句执行成功

 View Code

 查看结果

3、把MySQL数据库中的表数据导入到hbase

 普通导入

sqoop import \\
--connect jdbc:mysql://hadoop1:3306/mysql \\
--username root \\
--password root \\
--table help_keyword \\
--hbase-table new_help_keyword \\
--column-family person \\
--hbase-row-key help_keyword_id

 

此时会报错,因为需要先创建Hbase里面的表,再执行导入的语句

hbase(main):001:0> create 'new_help_keyword', 'base_info'
0 row(s) in 3.6280 seconds

=> Hbase::Table - new_help_keyword
hbase(main):002:0> 

 

以上是关于Sqoop学习之路的主要内容,如果未能解决你的问题,请参考以下文章

大数据学习之路

Sqoop学习

scala成长之路函数进阶——可能是史上最浅显易懂的闭包教程

Python学习之路:软件目录开发规范

sqoop学习

LeetCode 11 删除最外层的括号[栈] HERODING的LeetCode之路