多任务学习——RecSys 2020腾讯视频PLE

Posted 小爷毛毛(卓寿杰)

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多任务学习——RecSys 2020腾讯视频PLE相关的知识,希望对你有一定的参考价值。

当不同的学习任务之间较为相关时,多任务学习可以通过任务之间的信息共享,来提升学习的效率。但任务之间的相关性并不强,多任务学习可能带来负迁移(negative transfer)跷跷板现象,相关性不强的任务之间的信息共享会影响网络的表现。

腾讯视频提出CGC,其实就是在MMOE(参阅:《多任务学习——【KDD 2018】MMoE》)的基础上加上Customized Sharing:


每个任务除了有共享的Experts,还有独有的Experts,这样就很好的降低了相关性不强的任务之间的信息共享带来的问题。如第k个任务的控制门公式为:



S k ( x ) S^k(x) Sk(x)则是第k个任务的Experts的输出,包含了 Experts k和Experts Shared。

PLE就是多层的CGC。多层堆叠共享的Experts也是基于同样的控制门机制往后输出:

以上是关于多任务学习——RecSys 2020腾讯视频PLE的主要内容,如果未能解决你的问题,请参考以下文章

推荐系统(十六)多任务学习:腾讯PLE模型(Progressive Layered Extraction model)

推荐系统(十六)多任务学习:腾讯PLE模型(Progressive Layered Extraction model)

推荐系统(十六)多任务学习:腾讯PLE模型(Progressive Layered Extraction model)

多目标建模算法PLE

RecSys2020推荐系统论文集锦

paper学习笔记 - PLE