Python分析44130条用户观影数据,挖掘用户与电影之间的隐藏信息!
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python分析44130条用户观影数据,挖掘用户与电影之间的隐藏信息!相关的知识,希望对你有一定的参考价值。
参考技术A很多电影也上映,看电影前很多人都喜欢去 『豆瓣』 看影评,所以我爬取44130条 『豆瓣』 的用户观影数据,分析 用户之间 的关系, 电影之间 的联系,以及 用户和电影之间 的隐藏关系。
在****『豆瓣』****平台爬取用户观影数据。
为了获取用户,我选择了其中一部电影的影评,这样可以根据评论的用户去获取其用户名称(**后面爬取用户观影记录只需要****『用户名称』******)。
url中start参数是页数(page 20,每一页20条数据),因此start=0、20、40...,也就是 20的倍数 ,通过改变start参数值就可以获取这 4614条用户的名称。 *
查看网页的标签,可以找到******『用户名称』******值对应的标签属性。
上一步爬取到****『用户名称』****,接着爬取用户观影记录需要用到****『用户名称』。****
[图片上传失败...(image-65a80e-1624889400616)]
通过改变****『用户名称』****,可以获取到不同用户的观影记录。
url中start参数是页数(page 15,每一页15条数据),因此start=0、15、30...,也就是 15的倍数 ,通过改变start参数值就可以获取这 1768条观影记录称。 *
查看网页的标签,可以找到****『电影名』****值对应的标签属性。
excel表有两个标题(用户, 影评)
定义了写入excel函数,这样爬起每一页数据时候调用写入函数将数据保存到excel中。
最后采集了44130条数据(原本是4614个用户,每个用户大约有500~1000条数据,预计 400万条数据 )。但是为了演示分析过程,只爬取每一个用户的前30条观影记录( 因为前30条是最新的 )。
最后这44130条数据会在 下面分享给大家 。
从豆瓣.xls中读取全部数据放到datalist集合中。
以用户 『mumudancing』 为例进行用户画像
以用户 『mumudancing』 为例,对用户之间进行 电影推荐
以电影 『送你一朵小红花』 为例,对电影之间进行 电影推荐
python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码)
参考技术APython在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。
Python数据分析与挖掘技术概述
所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。
预先善其事必先利其器
我们首先聊聊数据分析的模块有哪些:
下面就说说这些模块的基础使用。
numpy模块安装与使用
安装:
下载地址是:http://www.lfd.uci.edu/~gohlke/pythonlibs/
我这里下载的包是1.11.3版本,地址是:http://www.lfd.uci.edu/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy
numpy简单使用
生成随机数
主要使用numpy下的random方法。
pandas
使用 pip install pandas 即可
直接上代码:
下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:
常用方法如下:
下面看看pandas对数据的统计,下面就说说每一行的信息
转置功能:把行数转换为列数,把列数转换为行数,如下所示:
通过pandas导入数据
pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。
CSV文件
csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列
excel表格
依赖于xlrd模块,请安装它。
老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数
读取SQL
依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。
读取HTML
依赖于lxml模块,请安装它。
对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
读取HTML只会读取HTML里的表格,也就是只读取
显示的是时候是通过python的列表展示,同时添加了行与列的标识
读取txt文件
输出显示的时候同时添加了行与列的标识
scipy
安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:http://www.lfd.uci.edu/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl
matplotlib 数据可视化分析
我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。
下面请看代码:
下面说说修改图的样式
关于图形类型,有下面几种:
关于颜色,有下面几种:
关于形状,有下面几种:
我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:
我们还可以画虚线图,代码如下所示:
还可以给图添加上标题,x,y轴的标签,代码如下所示
直方图
利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。
Y轴为出现的次数,X轴为这个数的值(或者是范围)
还可以指定直方图类型通过histtype参数:
图形区别语言无法描述很详细,大家可以自信尝试。
举个例子:
子图功能
什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:
我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。
先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。
我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。
下面看看代码:
以上是关于Python分析44130条用户观影数据,挖掘用户与电影之间的隐藏信息!的主要内容,如果未能解决你的问题,请参考以下文章