CS109 Lecture 2

Posted ZJun310

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CS109 Lecture 2相关的知识,希望对你有一定的参考价值。

CS109 Lecture 2

Concepts

  1. Infographics
  2. Distribution
    • CDF (cumulative distribution function)
      python
      import scipy.stats
      scipy.stats.norm.cdf(2)
    • Histograms
      Histogram is easier to interpret than CDF
  3. Normal Approximation
    Most data is not normal,So It’s Important for us to picturing data , looking into data and finding an appropriate way to tell a story
  4. QQ-plots
    Observed versus normal approximation quantiles

Topics

Data Wrangling

In most case , we have to clean our data

Install Anconda and Use IPython

Anconda is a great environments for us to use python

Get Start With Data

import pandas as pd
  1. Read data from Web
    python
    url = ‘urls’
    Data = pd.read_table(url)
  2. Plot data
    python
    data_to_plot = Data.column1
    data_to_plot.plot()
    data_to_plot.plot(kind='bar')
    data_to_plot_multiple = Data
    data_to_plot_multiple.plot(kind = 'bar')
  3. Fix the Legend
    python
    ax = data_to_plot.plot(kind = 'bar' , legend = False)
    ax.legend(loc = 'center left' , bbox_to_anchor = (1,0.5))
  4. Stacked Bar Plot
    python
    data_to_plot_multiple.plot(kind = 'bar' , legend = False , stacked = True)
    data_to_plot_multiple.plot(kind = 'barh' , legend = False , stacked = True) # horizontal Barplot
  5. Add Labels For Horizontal Barplot
    python
    data_to_plot_multiple.set_index(index_names,inplace = True)
    data_to_plot_multiple.plot(kind = 'barh' , legend = False , stacked = True)

Anscombe’s Quartet

Same mean,variance,correlation,and linear regression line , but the data is very different

以上是关于CS109 Lecture 2的主要内容,如果未能解决你的问题,请参考以下文章

CS109 Lecture 3

CS109 Lecture 4

CS109 Lecture 7

CS109 Lecture 7

[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 9 深度学习2

[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 2 颜色和数学基础