生存分析入门和R分析
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了生存分析入门和R分析相关的知识,希望对你有一定的参考价值。
参考技术A生存分析主要是使用一系列统计方法调查事件发生时间的研究。
## 生存分析应用于各种领域,如:
## 在癌症研究中,典型的研究问题是:
## 生存分析主要方法
## 基本的概念
## 疾病中不同类型事件
需要关注的点在于,1)死亡的时间;2)无复发生存时间,对应于对治疗到疾病复发之间的时间。
截尾
生存分析研究的是事件发生(复发或死亡)之前的预期时间。然而,在研究中,由于各种原因无法收集到事件发生的完整信息,从而产生截尾数据。
## 截尾事件也分为了不同的情况:
## 生存函数和风险函数
Kaplan-Meier方法是一种用于从收集的生存时间估计生存概率的非参数方法 (Kaplan and Meier, 1958)。
时间 的生存概率 的计算公式如下:
估计的概率(S(t))是一个阶跃函数,它只在每个事件的发生的时刻才会改变。生存概率的置信区间也是可以计算的。
KM生存曲线(KM生存概率随时间变化的曲线)提供了有用的数据总结,可用于估计中位生存时间等指标。
KM生存曲线(KM生存概率随时间变化的曲线)提供了有用的数据总结,可用于估计中位生存时间等。
## R 包准备
常用的两个R包
## 安装R包
## 示例数据集
survival 包内置的 lung数据
## 计算生存曲线:survfit()
可以使用 survival 包中的 survfit () 计算kaplan-Meier生存估计, survfit () 需要的参数:
## 使用summary()对模型进行统计,查看详细信息
## survfit()返回结果的解读
## 数据整理
或者使用 survminer 包中的surv_summary()函数汇总数据生成一个数据框
获取生存曲线的信息,包括具有置信区间的生存中值,以及每个曲线中的受试者总数和事件数。
## 可视化生存曲线
更多参数设置自定义生存曲线图
## Kaplan-Meier图的解读
横轴(x轴)表示以天为单位的时间,纵轴(y轴)表示生存的概率或生存人口的比例。途中曲线代表两组病人的生存曲线。曲线的垂直下降表示事件。曲线上的垂直刻度表示这个病人在这个时候被审查了。
每个组的中位生存时间
age=1(男性组)的中位生存时间为270天,而age=2(女性组)的中位生存时间为426天。与男性相比,女性肺癌患者的生存率似乎有优势。然而,为了评估这种差异是否具有统计学意义,需要进行正式的统计检验,还需要进一步进行分析。
## 生存曲线可以设置显示范围:
## 事件累计发生曲线图:
累积危险是估计危险概率的常用方法,被定义为H(t)=−log(survival function)=−log(S(t))。累积危害(H(t))可以解释为死亡率的累积度。换句话说,如果事件是一个可重复的过程,它对应于每个个体在时间t时之前事件发生的数量。
## 累计风险概率(cumulative hazard)图
## 比较生存曲线的Log-Rank检验:survdiff()
对数秩检验(log-rank test)是比较两个或多个生存曲线的最广泛使用的方法。零假设是两组生存曲线之间的存活率没有差异。对数秩检验是一种非参数检验,它对生存分布没有任何假设。从本质上说,对数秩检验将观察到的每组事件的数量与零假设成立(即生存曲线是一致的)所期望的数量进行比较。对数秩检验统计量分布与卡方检验统近似。
survival包的 survdiff ()函数可以对两组生存曲线进行对数秩检验。
## 拟合复杂生存曲线
### 使用多个因素的组合来计算生存曲线。
生存分析主要是使用一系列统计方法调查事件发生时间的研究。
生存数据一般用两个相关函数来描述和建模:
系列文章
R|生存分析 - KM曲线 ,值得拥有姓名和颜值
本文首发于“生信补给站”:https://mp.weixin.qq.com/s/lpkWwrLNtkLH8QA75X5STw
生存分析作为分析疾病/癌症预后的出镜频率超高的分析手段,而其结果展示的KM曲线也必须拥有姓名和颜值!
生存分析相关推文:
生存分析和KM曲线:R|生存分析(1)
分析结果一键输出:R|生存分析-结果整理
时间依赖生存分析:R|timeROC-分析
一 数据和R包
为方便,使用内置lung数据集
#载入所需的R包
library("survival")
library("survminer")
#载入并查看数据集
data("lung")
head(lung)
inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0
6 12 1022 1 74 1 1 50 80 513 0
二 原生KM曲线
#构建模型
fit <- survfit(Surv(time, status) ~ sex, data=lung)
?
#绘制原生KM曲线
plot(fit)
可以很容易的发现与文献中的差异,可优化:
1)区分两条线的颜色和legend
2)坐标轴,标题,主题优化
3)Risk table
4)P值,OR值,CI值等注释信息
三 优化KM曲线
1 survminer绘制KM曲线
p1 <- ggsurvplot(fit)
P1
呐,线的颜色可以和性别对应起来了,Q1解决!
2 坐标轴,标题,主题优化
p2 <- ggsurvplot(fit, data = lung,
surv.median.line = "hv", #添加中位生存曲线
palette=c("red", "blue"), #更改线的颜色
legend.labs=c("Sex1","Sex2"), #标签
legend.title="Treatment",
title="Overall survival", #标题
ylab="Cumulative survival (percentage)",xlab = " Time (Days)", #更改横纵坐标
censor.shape = 124,censor.size = 2,conf.int = FALSE, #删失点的形状和大小
break.x.by = 100#横坐标间隔
)
P2
以上基本就完成了KM曲线颜色,线型大小,标签,横纵坐标,标题,删失点等的修改,Q2搞定!
注意中位生存时间表示50 %的个体尚存活的时间,而不是生存时间的中位数
3 Risk Table
p3 <- ggsurvplot(fit, data = lung,
surv.median.line = "hv", #添加中位生存曲线
palette=c("red", "blue"),
legend.labs=c("Sex1","Sex2"), #标签
legend.title="Treatment",
title="Overall survival",
ylab="Cumulative survival (percentage)",xlab = " Time (Days)", #更改横纵坐标
censor.shape = 124,censor.size = 2,conf.int = FALSE,
break.x.by = 100,
risk.table = TRUE,tables.height = 0.2,
tables.theme = theme_cleantable(),
ggtheme = theme_bw())
p3
注 tables.height可调整为看起来“舒服”的高度
根据risk table 可以看出关键点的当前状态,Q3摆平!
4 添加注释信息
1)添加KM的P值
P4 <- ggsurvplot(fit, data = lung,
pval = TRUE,#添加P值
pval.coord = c(0, 0.03), #调节Pval的位置
surv.median.line = "hv", #添加中位生存曲线
palette=c("red", "blue"),
legend.labs=c("Sex1","Sex2"), #标签
legend.title="Treatment",
title="Overall survival",
ylab="Cumulative survival (percentage)",xlab = " Time (Days)", #更改横纵坐标
censor.shape = 124,censor.size = 2,conf.int = FALSE,
break.x.by = 100,
risk.table = TRUE,tables.height = 0.2,
tables.theme = theme_cleantable(),
ggtheme = theme_bw())
P4
pval.coord可以调节P值得位置
2)添加COX回归hazard ratio值等相关信息**
###添加COX回归hazard ratio值相关信息
res_cox<-coxph(Surv(time, status) ~sex, data=lung)
p3$plot = p3$plot + ggplot2::annotate("text",x = 50, y = 0.15,
label = paste("HR :",round(summary(res_cox)$conf.int[1],2))) + ggplot2::annotate("text",x = 50, y = 0.10,
label = paste("(","95%CI:",round(summary(res_cox)$conf.int[3],2),"-",round(summary(res_cox)$conf.int[4],2),")",sep = ""))+
ggplot2::annotate("text",x = 50, y = 0.05,
label = paste("P:",round(summary(res_cox)$coef[5],4)))
p3
3)添加其他信息
可类似上述annotation得方式,使用ggplot2添加文字,箭头,公式等其他信息,下面为你可能需要的ggplot2的几个知识:
ggplot2|theme主题设置,详解绘图优化-“精雕细琢”
参考资料:
◆ ◆ ◆ ◆ ◆
精心整理(含图版)|R语言生信分析,可视化,你要的全拿走,建议收藏!
以上是关于生存分析入门和R分析的主要内容,如果未能解决你的问题,请参考以下文章
R语言生存分析生成仿真数据构建COX回归分析模型并计算C-index