在线等 数据库关系模式 R=(M,N,P, Q), 依赖集F= M N→Q, N→P, MP→N

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在线等 数据库关系模式 R=(M,N,P, Q), 依赖集F= M N→Q, N→P, MP→N相关的知识,希望对你有一定的参考价值。

1.该关系最高时第几范式
2.如何分解为3NF范式以及BCNF范式
大神快出现吧,在线等

1,第一范式,因为候选键是MN,存在N→P,存在非主属性健依赖于候选键。
2,先把R分解成第2范式,把F分解成两个关系,但是不能存在非主属性健依赖于候选键,F1M N→Q,MP→N,F2N→P,这就达到了第2范式的要求了。由于不存在非主属性传递依赖于候选键,所以也属于第3范式。BC范式是每一个非主属性健都要依赖于候选键,所以F1还需要分解,F1M N→Q,F2N→P,F3MP→N,这样就达到BC范式的要求了。
要达到BC范式的好简单,就把依赖集的每一个关系都分解出来就得了。追问

这个关系的候选关键字是(M,N),(M,P),那么P也是主属性吧

追答

是啊,MP也是候选键,我看漏了,MP是候选键的话这个关系就是第2范式了,因为不存在非主属性健完全依赖于候选键

追问

为什么不是第三范式呢?

追答

因为存在了传递依赖

参考技术A Never Let You Go - Juris

UVa 10375 Choose and divide (唯一分解定理)

题目

题目大意

已知(C(m, n) = m! / (n!(m - n)!)), 输入整数(p), (q), (r), (s)((p ≥ q), (r ≥ s), (p), (q), (r), (s ≤ 10000)), 计算(C(p, q) / C(r, s))。输出保证不超过(10^8), 保留(5)位小数

题解

这道题还是挺水吧...

首先如果直接算出(C(p, q))(C(r, s))是肯定不可能的, C++存不下这么大的数。

这时候就要用到唯一分解定理, 根据组合数的定义, 显然分子分母可以约分, 那么就可以先预处理出小于10000的每个质数, 并求出(p!), (q!), ((p - q)!), (r), (s), ((r - s)!)的每个质因子的幂,进而表示出(C(p, q) / C(r, s)), 最后用cmath库中的pow函数计算就可以了。

当然这道题也可以暴力边乘边除来防止答案太大, 虽然精度损失有点大但也可以过这道题了

代码

唯一分解定理:

#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
std::vector<int> prime;
int power[10000];
int p, q, r, s;
double ans;
bool is_prime[10000];
inline void AddInteger(register int, const int&);
inline void AddFactorial(const int&, const int&);
int main(int argc, char const *argv[]) {
  freopen("test.txt", "w", stdout);
  memset(is_prime, 1, sizeof(is_prime));
  is_prime[0] = is_prime[1] = 0;
  for (register int i(2); i <= 10000; ++i) {
    if (is_prime[i]) {
      prime.push_back(i);
      for (register int j(2); i * j <= 10000; ++j) {
        is_prime[i * j] = 0;
      }
    }
  }
  while (~scanf("%d %d %d %d", &p, &q, &r, &s)) {
    memset(power, 0, sizeof(power));
    AddFactorial(p, 1),
    AddFactorial(q, -1),
    AddFactorial(p - q, -1),
    AddFactorial(r, -1),
    AddFactorial(s, 1),
    AddFactorial(r - s, 1);
    ans = 1.0;
    for (auto i : prime) {
      ans *= pow(double(i), double(power[i]));
    }
    printf("%.5lf
", ans);
  }
  return 0;
}
inline void AddInteger(register int n, const int &d) {
  for (auto i : prime) {
    if (n == 1) break;
    while (!(n % i)) {
      n /= i,
      power[i] += d;
    }
  }
}
inline void AddFactorial(const int &n, const int &d) {
  for (register int i(1); i <= n; ++i) {
    AddInteger(i, d);
  }
}

暴力:

#include <cstdio>
#include <algorithm>
double ans, p, q, r, s;
int main(int argc, char const *argv[]) {
  while (~scanf("%lf %lf %lf %lf", &p, &q, &r, &s)) {
    q = std::min(q, p - q),
    s = std::min(s, r - s);
    ans = 1.0;
    for (register double i(1.0); i <= q || i <= s; ++i) {
      if (i <= q) ans = ans * (p - q + i) / i;
      if (i <= s) ans = ans / (r - s + i) * i;
    }
    printf("%.5lf
", ans);
  }
  return 0;
}

以上是关于在线等 数据库关系模式 R=(M,N,P, Q), 依赖集F= M N→Q, N→P, MP→N的主要内容,如果未能解决你的问题,请参考以下文章

UVa 10375 Choose and divide (唯一分解定理)

lucas定理

UVa 10375 - Choose and divide(唯一分解定理)

题解:团伙

浅谈Lucas定理(卢卡斯定理)

什么是笛卡尔积?