EdNet数据集分析

Posted sereasuesue

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了EdNet数据集分析相关的知识,希望对你有一定的参考价值。

https://edudata.readthedocs.io/en/latest/build/blitz/EdNet_KT1/EdNet_KT1.htmlhttps://edudata.readthedocs.io/en/latest/build/blitz/EdNet_KT1/EdNet_KT1.html知识追踪数据集介绍_sereasuesue的博客-CSDN博客_知识追踪数据集最近准备用这个数据集进行跑数据,但发现对这个数据集不够了解,花费了很多时间,最近偶然发现了几篇介绍文章特整理

Field

Annotation

user_id

student’s id

timestamp

the moment the question was given, represented as Unix timestamp in milliseconds

solving_id

represents each learning session of students corresponds to each bunle. It is a form of single integer, starting from 1

question_id

the ID of the question that given to student, which is a form of qinteger

user_answer

the answer that the student submitted, recorded as a character between a and d inclusively

elapsed_time

the time that the students spends on each question in milliseconds

We randomly selected 5000 tables from all the students for analysis,which accounted for about 0.64% of the total data set, and added a column named user_id to the original table

import os
path=r'D:\\EdNet-KT1\\KT1'
d=[]
table_list=[]
s=pd.Series(os.listdir(path))
file_selected=s.sample(5000).to_numpy()
for file_name in file_selected:
    data_raw=pd.read_csv(path+'\\\\'+file_name,encoding = "ISO-8859-15")
    data_raw['user_id']=pd.Series([file_name[:-4]]*len(data_raw))
    d.append([file_name[:-4],len(data_raw)])
    data=pd.DataFrame(data_raw,columns=['user_id']+data_raw.columns.to_list()[:-1])
    table_list.append(data)
df=pd.concat(table_list)
pd.set_option('display.max_rows',10)
df=df.reset_index(drop=True)
df
user_idtimestampsolving_idquestion_iduser_answerelapsed_time
0u71787515653320274491q4862d45000
1u71787515653320574922q6747d24000
2u71787515653320857433q326c25000
3u71787515653321164754q6168a27000
4u71787515653321371485q847a17000
.....................
574251u177603153037180893115q6984b44250
574252u177603153037219761416q7335c95750
574253u177603153037219818116q7336a95750
574254u177603153037219887916q7337c95750
574255u177603153037219942516q7338b95750

574256 rows × 6 columns

General Feature

df.describe()
timestampsolving_idelapsed_time
count5.742560e+05574256.0000005.742560e+05
mean1.546425e+12875.9028592.599017e+04
std2.019656e+101941.9780093.376126e+04
min1.494451e+121.0000000.000000e+00
25%1.531720e+1277.0000001.600000e+04
50%1.548410e+12311.0000002.100000e+04
75%1.564817e+12900.0000003.000000e+04
max1.575306e+1218039.0000007.650000e+06
len(df.question_id.unique())
11838

This shows there are totally 11838 questions.

Missing Value

print('Part of missing values for every column')
print(df.isnull().sum() / len(df))
Part of missing values for every column
user_id         0.000000
timestamp       0.000000
solving_id      0.000000
question_id     0.000000
user_answer     0.000556
elapsed_time    0.000000
dtype: float64

This indicates that there are no missing values in all columns except user_answer. A missing value in user_answer indicates that some students did not choose an option.

df.fillna('not choose',inplace=True)

Fill in not choose in the position of the missing value

Sort user_id

user_count_table=pd.DataFrame(d,columns=['user_id','count'])
ds=user_count_table.sort_values(by=['count'],axis=0).tail(40)
fig = px.bar(
    ds,
    x = 'count',
    y = 'user_id',
    orientation='h',
    title='Top 40 active students'
)

fig.show("svg")
 

We use the number of questions that students have done as an indicator of whether a student is active. This figure shows the 40 most active students.

ds=df.loc[:,['user_id','elapsed_time']].groupby('user_id').mean()
ds=ds.reset_index(drop=False)
ds.columns=['user_id','avg_elapsed_time']
ds_tail=ds.sort_values(by=['avg_elapsed_time'],axis=0).tail(40)

fig_tail = px.bar(
    ds_tail,
    x = 'avg_elapsed_time',
    y = 'user_id',
    orientation='h',
    title='Bottom 40 fast-solving students '
)
fig_tail.show("svg")
ds_head=ds.sort_values(by=['avg_elapsed_time'],axis=0).head(40)
fig_head = px.bar(
    ds_head,
    x = 'avg_elapsed_time',
    y = 'user_id',
    orientation='h',
    title='Top 40 fast-solving students'
)
fig_head.show("svg")

We take the average time it takes students to do a question as an indicator of how fast students do it. These two figures respectively show the fastest and slowest students among the 5000 students, and the average time they spent doing the problems 

 

Note that some students spend very little time doing the questions, and the time is almost zero. We can almost judge that these students did not do the questions at all, and they chose blindly. We remove these students and rearrange them

bound=5000 # If the average time of doing the topic is less than 5000, it means that the student is most likely to be bad
ds=df.loc[:,['user_id','elapsed_time']].groupby('user_id').mean()
ds=ds.reset_index(drop=False)
ds.columns=['user_id','avg_elapsed_time']
bad_user_ids=ds[ds['avg_elapsed_time']<bound]['user_id'].to_list()
df_drop=df.drop(df[df['user_id'].isin(bad_user_ids)].index)
print('bad students number is ',len(bad_user_ids))
print('length of table after dropping is ',len(df_drop))
bad students number is  61
length of table after dropping is  567778

After dropping

ds=df_drop['user_id'].value_counts().reset_index(drop=False)
ds.columns=['user_id','count']
ds_tail=ds.sort_values(by=['count'],axis=0).tail(40)
fig_tail = px.bar(
    ds_tail,
    x = 'count',
    y = 'user_id',
    orientation='h',
    title='Top 40 active students after dropping some students'
)
fig_tail.show("svg")

This figure shows the 40 most active students after dropping some bad students.

ds=df_drop.loc[:,['user_id','elapsed_time']].groupby('user_id').mean()
ds=ds.reset_index(drop=False)
ds.columns=['user_id','avg_elapsed_time']

ds_head=ds.sort_values(by=['avg_elapsed_time'],axis=0).head(40)
fig_head = px.bar(
    ds_head,
    x = 'avg_elapsed_time',
    y = 'user_id',
    orientation='h',
    title='Top 40 fast-solving students after dropping some students'
)
fig_head.show("svg")
 

This figure respectively show the more reasonable fastest students among the 5000 students than before, and the average time they spent doing the problems.

Sort question_id

ds=df.loc[:,['question_id','elapsed_time']].groupby('question_id').mean()
ds=ds.reset_index(drop=False)
ds_tail=ds.sort_values(by=['elapsed_time'],axis=0).tail(40)
fig_tail = px.bar(
    ds_tail,
    x = 'elapsed_time',
    y = 'question_id',
    orientation='h',
    title='Top 40 question_id by the average of elapsed_time'
)
fig_tail.show("svg")
ds_head=ds.sort_values(by=['elapsed_time'],axis=0).head(40)
fig_head = px.bar(
    ds_head,
    x = 'elapsed_time',
    y = 'question_id',
    orientation='h',
    title='Bottom 40 question_id by the average of elapsed_time'
)
fig_head.show("svg")
 

 

 

We can judge the difficulty of this question from the average time spent on a question.

These two figures reflect the difficulty of the questions and shows the ids of the 40 most difficult and 40 easiest questions.s

Appearence of Questions

ds=df['question_id'].value_counts().reset_index(drop=False)
ds.columns=['question_id','count']
ds_tail=ds.sort_values(by=['count'],axis=0).tail(40)
fig_tail = px.bar(
    ds_tail,
    x = 'count',
    y = 'question_id',
    orientation='h',
    title='Top 40 question_id by the number of appearance'
)
fig_tail.show("svg")
ds_head=ds.sort_values(by=['count'],axis=0).head(40)
fig_head = px.bar(
    ds_head,
    x = 'count',
    y = 'question_id',
    orientation='h',
    title='Bottom 40 question_id by the number of appearance'
)
fig_head.show("svg")

These two images reflect the 40 questions that were drawn the most frequently and the 40 questions that were drawn the least frequently

ds2=df['question_id'].value_counts().reset_index(drop=False)
ds2.columns=['question_id','count']
def convert_id2int(x):
    return pd.Series(map(lambda t:int(t[1:]),x))
ds2['question_id']=convert_id2int(ds2['question_id'])
ds2.sort_values(by=['question_id'])
fig = px.histogram(
    ds2,
    x = 'question_id',
    y = 'count',
    title='question distribution'
)
fig.show("svg")
Question’s Option Selected Most Frequently
ds=df.loc[:,['question_id','user_answer','user_id']].groupby(['question_id','user_answer']).count()

most_count_dict=
for id in df.question_id.unique():
    most_count=ds.loc[id].apply(lambda x:x.max())[0]
    most_count_dict[id]=most_count
ds2=ds.apply(lambda x:x-most_count_dict[x.name[0]],axis=1)
ds2=ds2[ds2.user_id==0]
ds2=ds2.reset_index(drop=False).loc[:,['question_id','user_answer']]
ds2.columns=['question_id','most_answer']
ds2.index=ds2['question_id']
ds2['most_answer']

question_id
q1        b
q10       d
q100      c
q1000     c
q10000    b
         ..
q9995     d
q9996     a
q9997     d
q9998     a
q9999     b
Name: most_answer, Length: 12215, dtype: object
 

This shows the most selected options (including not choose) for each question.

Note that if there are multiple options for a question to be selected most frequently, the table will also contain them.

Choices Distribution

ds = df['user_answer'].value_counts().reset_index(drop=False)
ds.columns = ['user_answer', 'percent']

ds['percent']=ds['percent']/len(df)
ds = ds.sort_values(by=['percent'])

fig = px.pie(
    ds,
    names = ds['user_answer'],
    values = 'percent',
    title = 'Percent of Choice'
)

fig.show("svg")

We use a pie chart to show the distribution of the proportions of abcd and not choose among the options selected by the 5000 students.

Sort By Time Stamp

import time
import datetime
df_time=df.copy()
columns=df.columns.to_list()
columns[1]='time'
df_time.columns=columns
df_time['time'] /= 1000
df_time['time']=pd.Series(map(datetime.datetime.fromtimestamp,df_time['time']))
df_time
 
user_idtimesolving_idquestion_iduser_answerelapsed_time
0u7178752019-08-09 14:27:07.4491q4862d45000
1u7178752019-08-09 14:27:37.4922q6747d24000
2u7178752019-08-09 14:28:05.7433q326c25000
3u7178752019-08-09 14:28:36.4754q6168a27000
4u7178752019-08-09 14:28:57.1485q847a17000
.....................
574251u1776032018-06-30 23:16:48.93115q6984b44250
574252u1776032018-06-30 23:23:17.61416q7335c95750
574253u1776032018-06-30 23:23:18.18116q7336a95750
574254u1776032018-06-30 23:23:18.87916q7337c95750
574255u1776032018-06-30 23:23:19.42516q7338b95750

574256 rows × 6 columns

This table shows the result of converting unix timestamp to datetime format

question distribution by time

ds_time_question=df_time.loc[:,['time','question_id']]
ds_time_question=ds_time_question.sort_values(by=['time'])
ds_time_question
timequestion_id
5030142017-05-11 05:17:10.922q129
5030152017-05-11 05:17:34.561q8058
5030162017-05-11 05:17:56.806q8120
5030172017-05-11 05:18:22.591q157
5030182017-05-11 05:18:43.085q52
.........
1082152019-12-03 00:48:27.437q776
1082162019-12-03 00:59:38.437q10847
1082172019-12-03 00:59:38.437q10844
1082182019-12-03 00:59:38.437q10845
1082192019-12-03 00:59:38.437q10846

574256 rows × 2 columns

This table shows the given questions in chronological order.And we can see that the earliest question q127 is on May 11, 2017, and the latest question q10846 is on December 3, 2019.

ds_time_question['year']=pd.Series(map(lambda x :x.year,ds_time_question['time']))
ds_time_question['month']=pd.Series(map(lambda x :x.month,ds_time_question['time']))
ds=ds_time_question.loc[:,['year','month']].value_counts()

years=ds_time_question['year'].unique()
years.sort()
fig=make_subplots(
    rows=2,
    cols=2,
    start_cell='top-left',
    subplot_titles=tuple(map(str,years))
)
traces=[
    go.Bar(
        x=ds[year].reset_index().sort_values(by=['month'],axis=0)['month'].to_list(),
        y=ds[year].reset_index().sort_values(by=['month'],axis=0)[0].to_list(),
        name='Year: '+str(year),
        text=[ds[year][month] for month in ds[year].reset_index().sort_values(by=['month'],axis=0)['month'].to_list()],
        textposition='auto'
    ) for year in years
]
for i in range(len(traces)):
    fig.append_trace(traces[i],(i//2)+1,(i%2)+1)

fig.update_layout(title_text='Bar of the distribution of the number of question solved in  years'.format(len(traces)))
fig.show('svg')
 

 

  1. These three figures show the distribution of the number of problems solved in each month of 2017, 2018, and 2019.

  2. And the number of questions solved is gradually increasing.

  3. And the number of questions solved in March, 4, May, and June is generally small.

user distribution by time

ds_time_user=df_time.loc[:,['user_id','time']]
ds_time_user=ds_time_user.sort_values(by=['time'])
ds_time_user
user_idtime
503014u210562017-05-11 05:17:10.922
503015u210562017-05-11 05:17:34.561
503016u210562017-05-11 05:17:56.806
503017u210562017-05-11 05:18:22.591
503018u210562017-05-11 05:18:43.085
.........
108215u94762019-12-03 00:48:27.437
108216u94762019-12-03 00:59:38.437
108217u94762019-12-03 00:59:38.437
108218u94762019-12-03 00:59:38.437
108219u94762019-12-03 00:59:38.437

574256 rows × 2 columns

This table shows the students who did the questions in order of time.And we can see that the first student who does the problem is u21056, and the last student who does the problem is u9476.

ds_time_user=df_time.loc[:,['user_id','time']]
ds_time_user=ds_time_user.sort_values(by=['time'])
ds_time_user['year']=pd.Series(map(lambda x :x.year,ds_time_user['time']))
ds_time_user['month']=pd.Series(map(lambda x :x.month,ds_time_user['time']))
ds_time_user.drop(['time'],axis=1,inplace=True)
ds=ds_time_user.groupby(['year','month']).nunique()

years=ds_time_user['year'].unique()
years.sort()
fig=make_subplots(
    rows=2,
    cols=2,
    start_cell='top-left',
    subplot_titles=tuple(map(str,years))
)
traces=[
    go.Bar(
        x=ds.loc[year].reset_index()['month'].to_list(),
        y=ds.loc[year].reset_index()['user_id'].to_list(),
        name='Year: '+str(year),
        text=[ds.loc[year].loc[month,'user_id'] for month in ds.loc[year].reset_index()['month'].to_list()],
        textposition='auto'
    ) for year in years
]
for i in range(len(traces)):
    fig.append_trace(traces[i],(i//2)+1,(i%2)+1)

fig.update_layout(title_text='Bar of the distribution of the number of active students in  years'.format(len(traces)))
fig.show('svg')

  1. These three graphs respectively show the number of students active on the system in each month of 2017, 2018, and 2019.

  2. And we can see that the number of active students in 2019 is generally more than that in 2018, and there are more in 2018 than in 2017, indicating that the number of users of the system is gradually increasing.

  3. Note that the number of students is not repeated here

 

以上是关于EdNet数据集分析的主要内容,如果未能解决你的问题,请参考以下文章

利用 Python 分析 MovieLens 1M 数据集

网络安全分析数据集

R语言重要数据集分析研究——  数据集本身的分析技巧

Python数据分析(八):农粮组织数据集探索性分析(EDA)

葡萄酒质量数据集分析

数据分析经典案例-鸢尾花(iris)数据集分析