Python多进程编程
Posted 呆呆敲代码的阿狸
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python多进程编程相关的知识,希望对你有一定的参考价值。
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
1. Process
创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。
属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。
例1.1:创建函数并将其作为单个进程
import multiprocessing
import time
def worker(interval):
n = 5
while n > 0:
print("The time is 0".format(time.ctime()))
time.sleep(interval)
n -= 1
if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.start()
print "p.pid:", p.pid
print "p.name:", p.name
print "p.is_alive:", p.is_alive()
结果
1 2 3 4 5 6 7 8 |
|
例1.2:创建函数并将其作为多个进程
import multiprocessing
import time
def worker_1(interval):
print "worker_1"
time.sleep(interval)
print "end worker_1"
def worker_2(interval):
print "worker_2"
time.sleep(interval)
print "end worker_2"
def worker_3(interval):
print "worker_3"
time.sleep(interval)
print "end worker_3"
if __name__ == "__main__":
p1 = multiprocessing.Process(target = worker_1, args = (2,))
p2 = multiprocessing.Process(target = worker_2, args = (3,))
p3 = multiprocessing.Process(target = worker_3, args = (4,))
p1.start()
p2.start()
p3.start()
print("The number of CPU is:" + str(multiprocessing.cpu_count()))
for p in multiprocessing.active_children():
print("child p.name:" + p.name + "\\tp.id" + str(p.pid))
print "END!!!!!!!!!!!!!!!!!"
结果
1 2 3 4 5 6 7 8 9 10 11 |
|
例1.3:将进程定义为类
import multiprocessing
import time
class ClockProcess(multiprocessing.Process):
def __init__(self, interval):
multiprocessing.Process.__init__(self)
self.interval = interval
def run(self):
n = 5
while n > 0:
print("the time is 0".format(time.ctime()))
time.sleep(self.interval)
n -= 1
if __name__ == '__main__':
p = ClockProcess(3)
p.start()
注:进程p调用start()时,自动调用run()
结果
1 2 3 4 5 |
|
例1.4:daemon程序对比结果
#1.4-1 不加daemon属性
import multiprocessing
import time
def worker(interval):
print("work start:0".format(time.ctime()));
time.sleep(interval)
print("work end:0".format(time.ctime()));
if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.start()
print "end!"
结果
1 2 3 |
|
#1.4-2 加上daemon属性
import multiprocessing
import time
def worker(interval):
print("work start:0".format(time.ctime()));
time.sleep(interval)
print("work end:0".format(time.ctime()));
if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.daemon = True
p.start()
print "end!"
结果
1 |
|
注:因子进程设置了daemon属性,主进程结束,它们就随着结束了。
#1.4-3 设置daemon执行完结束的方法
import multiprocessing
import time
def worker(interval):
print("work start:0".format(time.ctime()));
time.sleep(interval)
print("work end:0".format(time.ctime()));
if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.daemon = True
p.start()
p.join()
print "end!"
结果
1 2 3 |
|
2. Lock
当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。
import multiprocessing
import sys
def worker_with(lock, f):
with lock:
fs = open(f, 'a+')
n = 10
while n > 1:
fs.write("Lockd acquired via with\\n")
n -= 1
fs.close()
def worker_no_with(lock, f):
lock.acquire()
try:
fs = open(f, 'a+')
n = 10
while n > 1:
fs.write("Lock acquired directly\\n")
n -= 1
fs.close()
finally:
lock.release()
if __name__ == "__main__":
lock = multiprocessing.Lock()
f = "file.txt"
w = multiprocessing.Process(target = worker_with, args=(lock, f))
nw = multiprocessing.Process(target = worker_no_with, args=(lock, f))
w.start()
nw.start()
print "end"
结果(输出文件)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
3. Semaphore
Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。
import multiprocessing
import time
def worker(s, i):
s.acquire()
print(multiprocessing.current_process().name + "acquire");
time.sleep(i)
print(multiprocessing.current_process().name + "release\\n");
s.release()
if __name__ == "__main__":
s = multiprocessing.Semaphore(2)
for i in range(5):
p = multiprocessing.Process(target = worker, args=(s, i*2))
p.start()
结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
4. Event
Event用来实现进程间同步通信。
import multiprocessing
import time
def wait_for_event(e):
print("wait_for_event: starting")
e.wait()
print("wairt_for_event: e.is_set()->" + str(e.is_set()))
def wait_for_event_timeout(e, t):
print("wait_for_event_timeout:starting")
e.wait(t)
print("wait_for_event_timeout:e.is_set->" + str(e.is_set()))
if __name__ == "__main__":
e = multiprocessing.Event()
w1 = multiprocessing.Process(name = "block",
target = wait_for_event,
args = (e,))
w2 = multiprocessing.Process(name = "non-block",
target = wait_for_event_timeout,
args = (e, 2))
w1.start()
w2.start()
time.sleep(3)
e.set()
print("main: event is set")
结果
1 2 3 4 5 |
|
5. Queue
Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:
import multiprocessing
def writer_proc(q):
try:
q.put(1, block = False)
except:
pass
def reader_proc(q):
try:
print q.get(block = False)
except:
pass
if __name__ == "__main__":
q = multiprocessing.Queue()
writer = multiprocessing.Process(target=writer_proc, args=(q,))
writer.start()
reader = multiprocessing.Process(target=reader_proc, args=(q,))
reader.start()
reader.join()
writer.join()
结果
1 |
|
6. Pipe
Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。
send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。
结果
7. Pool
在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。
例7.1:使用进程池(非阻塞)
#coding: utf-8
import multiprocessing
import time
def func(msg):
print "msg:", msg
time.sleep(3)
print "end"
if __name__ == "__main__":
pool = multiprocessing.Pool(processes = 3)
for i in xrange(4):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
pool.close()
pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
print "Sub-process(es) done."
一次执行结果
1 2 3 4 5 6 7 8 9 10 |
|
函数解释:
- apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
- close() 关闭pool,使其不在接受新的任务。
- terminate() 结束工作进程,不在处理未完成的任务。
- join() 主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。
执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。
例7.2:使用进程池(阻塞)
#coding: utf-8
import multiprocessing
import time
def func(msg):
print "msg:", msg
time.sleep(3)
print "end"
if __name__ == "__main__":
pool = multiprocessing.Pool(processes = 3)
for i in xrange(4):
msg = "hello %d" %(i)
pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
pool.close()
pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
print "Sub-process(es) done."
一次执行的结果
1 2 3 4 5 6 7 8 9 10 |
|
例7.3:使用进程池,并关注结果
import multiprocessing
import time
def func(msg):
print "msg:", msg
time.sleep(3)
print "end"
return "done" + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(3):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print ":::", res.get()
print "Sub-process(es) done."
一次执行结果
1 2 3 4 5 6 7 8 9 10 |
|
例7.4:使用多个进程池
#coding: utf-8
import multiprocessing
import os, time, random
def Lee():
print "\\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID
start = time.time()
time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数
end = time.time()
print 'Task Lee, runs %0.2f seconds.' %(end - start)
def Marlon():
print "\\nRun task Marlon-%s" %(os.getpid())
start = time.time()
time.sleep(random.random() * 40)
end=time.time()
print 'Task Marlon runs %0.2f seconds.' %(end - start)
def Allen():
print "\\nRun task Allen-%s" %(os.getpid())
start = time.time()
time.sleep(random.random() * 30)
end = time.time()
print 'Task Allen runs %0.2f seconds.' %(end - start)
def Frank():
print "\\nRun task Frank-%s" %(os.getpid())
start = time.time()
time.sleep(random.random() * 20)
end = time.time()
print 'Task Frank runs %0.2f seconds.' %(end - start)
if __name__=='__main__':
function_list= [Lee, Marlon, Allen, Frank]
print "parent process %s" %(os.getpid())
pool=multiprocessing.Pool(4)
for func in function_list:
pool.apply_async(func) #Pool执行函数,apply_async执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中
print 'Waiting for all subprocesses done...'
pool.close()
pool.join() #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
print 'All subprocesses done.'
一次执行结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
文章到这里就结束了,感谢你的观看
说实在的,每次在后台看到一些读者的回应都觉得很欣慰,我想把我收藏的一些编程干货贡献给大家,回馈每一个读者,希望能帮到你们。
干货主要有:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python所有知识点汇总(可以弄清楚Python的所有方向和技术)
*如果你用得到的话可以直接拿走,在我的QQ技术交流群里,可以自助拿走,群号是1042580880。*
————————————————
以上是关于Python多进程编程的主要内容,如果未能解决你的问题,请参考以下文章