举轻若重,于无声处听惊雷,微软大师级人物展示平平无奇的伟大算法

Posted beyondma

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了举轻若重,于无声处听惊雷,微软大师级人物展示平平无奇的伟大算法相关的知识,希望对你有一定的参考价值。

近日微软神级人物Raymond Chen最近个人博客上,发布了一篇关于《如何计算平均值》的博。这个话题虽然看似平淡无奇,却意外在引爆,并带来无数讨论

看完这篇博客之后,也让我感叹于国外技术讨论氛围的浓烈,遥想笔者读大学时在技术讨论时多是储如i+=(++i)+(i++)之类的孔乙己式的问题,而最近我们关注的热点要不是删库跑路坐牢的程序员,要不是员工离职倾向分析系统;而反观国外大神的博客,要不就是这种切入点非常简单,但是最终能够升华至编程之道层面的举轻若重的文章,要不就是秀出那些智商碾压的神仙代码,从这个角度上看我们国内的IT技术氛围还有极大的提升空间。

有关求平均数算法的最初版本

有关如何求平均数这个问题,Raymond Chen并没有从一开始就炫技,而是循序渐进先放了一段最普通的实现,如下:

unsigned average(unsigned a, unsigned b)

    return (a + b) / 2;


 

相信绝大多数程序员都能一眼看出这种方法中可能隐藏的错误,那就是无法处理值溢出的问题,在Raymond的原文当中“if unsigned integers are 32 bits wide, then it says that average(0x80000000U, 0x80000000U) is zero.”也就是说一旦(a+b)已经溢出,也就是大于unsign类型所能表示的最大整改,那么其计算结果将是average(0x80000000U, 0x80000000U)=0

不过笔者在这里需要指出0x80000000U是X86平台特有的一个溢出表示方法,即indefinite integer value(不确定数值),不过同样是溢出ARM等RISC架构处理则非常清晰和简单,在上溢出或下溢出时,保留整型能表示的最大值或最小值,对照比较如下:

CPU

溢出值转为long

变量保留值说明

x86

范围0x8000000000000000

indefinite integer value

x86

范围0x8000000000000000

indefinite integer value

ARM

范围0x7FFFFFFFFFFFFFFF

变量赋值最大的正数

ARM

范围0x8000000000000000

变量赋值最大的正数

因此这段代码在ARM平台上运行时,如果出现溢出情况也并不会返回0,而会是该类型表示最大整数的一半,当然这个最大整数根据处理器的字长不同可能会有所变化。

   return (a + b) / 2

低调的改进版本

接下来Raymond又给出了几种考虑溢出处理,同时又兼顾空间复杂度的方案

  1. 变形法:

也就是将(a+b)/2变形,首先找到a和b当中较大的值,设为high,较小的值设为low,然后把(a+b)/2变成high-(high-low)/2或者low+(high-low)/2,如下:

unsigned average(unsigned low, unsigned high)

    return low + (high - low) / 2;

这种方法所需要的运算量是先进行一次比较以确定两个输入的大小,然后还需要再做两次加法(在计算机运算中加法和减法其实是基本等效的)和一次除法,最终得到答案。

  1. 除法前置方案:

也就是先对两个输入进行除2操作,即把(a+b)/2转换为a/2+b/2,当然这种方法需要考虑个位丢失的问题,比如说1/2在整形运算当中的结果会是0,因此1/2+1/2的结果是0而不是1,此时需要把两个输入的个位提取出来进行修正,具体如下:

unsigned average(unsigned a, unsigned b)

    return (a / 2) + (b / 2) + (a & b & 1);

这个算法当中的计算量是两次除法,两次加法和一次运算操作。

3.SWAR法

SWAR法也非常的巧妙,它的本质思路就是把求平均值变成位运算,位操作其实就是二进制的操作,如果我们按位考虑输入值与输出结果的对应关系,那么会有以下的需求要点

1.输入都是0,输出结果是0

2.输入都是1,输出是1

3.输入是一个0一个1,那么输出结果就是1/2

而满足以上条件的位运算,是与运算加上异常运算除2的结果,即(a and b) + (a xor b )/2,如下:

unsigned average(unsigned a, unsigned b)

    return (a & b) + (a ^ b) / 2;// 变体 (a ^ b) + (a & b) * 2

至于(a and b) + (a xor b )/2这个等式为什么能满足求平均值的要求,大家根据各种输入的情况都列一下就一目了然了。在这种方案下的计算量是两次位运算、一次加法运算以及一次除法运算来完成。

空间换时间的改进版本

在算法设计当中有一个最基本的常识,空间复杂度与时间复杂度是对跷跷板,上一节的储多算法当中,基本都是牺牲时间复杂度为代价来换取对于溢出的正确处理,那么反过来讲也完全可以用空间换时间,比如现在我们大多数的终端电脑都是64位机了,没必要为了32位长的整形溢出问题而烦恼,直接把类型转换为Long再计算结果就可以了

unsigned average(unsigned a, unsigned b)

    // Suppose "unsigned" is a 32-bit type and
    // "unsigned long long" is a 64-bit type.
    return ((unsigned long long)a + b) / 2;

但是只要涉及的转换就又要针对不同架构的处理器进行特殊处理了,比如x8664位处理器在进行32位整形转换为64位长整形时会自动将高32位填为0

// x86-64: Assume ecx = a, edx = b, upper 32 bits unknown
    mov     eax, ecx        ; rax = ecx zero-extended to 64-bit value
    mov     edx, edx        ; rdx = edx zero-extended to 64-bit value
    add     rax, rdx        ; 64-bit addition: rax = rax + rdx
    shr     rax, 1          ; 64-bit shift:    rax = rax >> 1
                            ;                  result is zero-extended
                            ; Answer in eax

// AArch64 (ARM 64-bit): Assume w0 = a, w1 = b, upper 32 bits unknown
    uxtw    x0, w0          ; x0 = w0 zero-extended to 64-bit value
    uxtw    x1, w1          ; x1 = w1 zero-extended to 64-bit value
    add     x0, x1          ; 64-bit addition: x0 = x0 + x1
    ubfx    x0, x0, 1, 32   ; Extract bits 1 through 32 from result
                            ; (shift + zero-extend in one instruction)
                            ; Answer in x0

Mips64等架构则会将32位的整形转换为有符号扩展的类型这时候就需要增加rldicl等删除符号的指令做特殊处理。

// Alpha AXP: Assume a0 = a, a1 = b, both in canonical form
    insll   a0, #0, a0      ; a0 = a0 zero-extended to 64-bit value
    insll   a1, #0, a1      ; a1 = a1 zero-extended to 64-bit value
    addq    a0, a1, v0      ; 64-bit addition: v0 = a0 + a1
    srl     v0, #1, v0      ; 64-bit shift:    v0 = v0 >> 1
    addl    zero, v0, v0    ; Force canonical form
                            ; Answer in v0

// MIPS64: Assume a0 = a, a1 = b, sign-extended
    dext    a0, a0, 0, 32   ; Zero-extend a0 to 64-bit value
    dext    a1, a1, 0, 32   ; Zero-extend a1 to 64-bit value
    daddu   v0, a0, a1      ; 64-bit addition: v0 = a0 + a1
    dsrl    v0, v0, #1      ; 64-bit shift:    v0 = v0 >> 1
    sll     v0, #0, v0      ; Sign-extend result
                            ; Answer in v0

// Power64: Assume r3 = a, r4 = b, zero-extended
    add     r3, r3, r4      ; 64-bit addition: r3 = r3 + r4
    rldicl  r3, r3, 63, 32  ; Extract bits 63 through 32 from result
                            ; (shift + zero-extend in one instruction)
                            ; result in r3

不过这种向更高位类型转换的方案也有一定问题,那就是空间的浪费,因为我原本只需要1位去处理溢出就好了,但是做了转换之后我却用了白白消费了31位的空间没有利用。

利用进位处理溢出的改进版本

在现代CPU当中大多都带有Carry bit(这里指进位位,不是C位的意思)功能。通过读取Carry bit的信息,就能达到在不浪费空间的情况下处理溢出的问题。比如在X86-32位处理器的代码如下:


// x86-32
    mov     eax, a
    add     eax, b          ; Add, overflow goes into carry bit
    rcr     eax, 1          ; Rotate right one place through carry

// x86-64
    mov     rax, a
    add     rax, b          ; Add, overflow goes into carry bit
    rcr     rax, 1          ; Rotate right one place through carry

// 32-bit ARM (A32)
    mov     r0, a
    adds    r0, b           ; Add, overflow goes into carry bit
    rrx     r0              ; Rotate right one place through carry

// SH-3
    clrt                    ; Clear T flag
    mov     a, r0
    addc    b, r0           ; r0 = r0 + b + T, overflow goes into T bit
    rotcr   r0              ; Rotate right one place through carry

而对于那些没有Carry  bit功能的处理器来说,也可以通过自定义carry bit变量的方式来解决这个问题。如下

unsigned average(unsigned a, unsigned b)

#if defined(_MSC_VER)
    unsigned sum;
    auto carry = _addcarry_u32(0, a, b, &sum);
    sum = (sum & ~1) | carry;
    return _rotr(sum, 1);
#elif defined(__clang__)
    unsigned carry;
    sum = (sum & ~1) | carry;
    auto sum = __builtin_addc(a, b, 0, &carry);
    return __builtin_rotateright32(sum, 1);
#else
#error Unsupported compiler.
#endif

对应arm-thumb2的clang 汇编代码如下:


// __clang__ with ARM-Thumb2
    movs    r2, #0          ; Prepare to receive carry
    adds    r0, r0, r1      ; Calculate sum with flags
    adcs    r2, r2          ; r2 holds carry
    lsrs    r0, r0, #1      ; Shift sum right one position
    lsls    r1, r2, #31     ; Move carry to bit 31
    adds    r0, r1, r0      ; Combine

快速幂-逆用二分法

快速幂(Exponentiation by squaring,平方求幂)是一种简单而有效的小算法,它可以以[公式]的时间复杂度计算乘方。快速幂不仅本身非常常见,而且后续很多算法也都会用到快速幂。快速幂算法的核心思想就是每一步都把指数分成两半,而相应的底数做平方运算。这样不仅能把非常大的指数给不断变小,所需要执行的循环次数也变小,而最后表示的结果却一直不会变。

让我们先来看一个简单的例子:

3^10=3*3*3*3*3*3*3*3*3*3

步骤一:先把原乘方运算变为底数平方的幂运算

3^10=(3*3)*(3*3)*(3*3)*(3*3)*(3*3)

3^10=(3*3)^5

3^10=9^5

步骤二:直接迭代步骤1直到有乘方落单,无法凑对。

9^5=(9^4)*(9^1)

最终算出结果:

9^5=(6561^1)*(9^1)

递归实现如下:

int f(int a,int b)   //m^n

    if(b==0) return 1;

    int temp=f(a,b/2);

    return (b%2==0 ? 1 : a)*temp*temp;

非递归实现如下:

int pow2(int a,int b)

     if(b==0) return 1;



    int r=1,base=a;

    while(b!=0)

    if(b%2) r*=base;

    base*=base;

    b/=2;

    

    return r;

求平方根-Quake3中神一样的代码

可以看到Raymond的博客先从一个简单问题入手,逐步提出问题并给出解决方案,是一篇阐述编程之道的上乘之作,接下来请允许笔者再推荐一下《Quake3》当中的神级代码。《Quake3》这款3D游戏当年可以在几十兆内存的环境下跑得飞起,和目前动辄要求几十G显存的所谓3A大作形成鲜明对比,而《Quake3》取得这种性价比奇迹的关键在于把代码写得像神创造的一样。

《Quake3》最大的贡献莫过于提出使用平方根倒数速算法,并引入了0x5f3759df这样一个魔法数,目前这段代码的开源地址在:https://github.com/raspberrypi/quake3/blob/8d89a2a3c1707bf0f75b2ea26645b872e97c0b95/code/qcommon/q_math.c

如下:

float Q_rsqrt( float number )



floatint_t t;

float x2, y;

const float threehalfs = 1.5F;



x2 = number * 0.5F;

t.f  = number;

t.i  = 0x5f3759df - ( t.i >> 1 );               // what the fuck?

y  = t.f;

y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration

// y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed



return y;

这个算法的输入是一个float类型的浮点数,首先将输入右移一次(除以2),并用十六进制“魔术数字”0x5f3759df减去右移之后的数字,这样即可得对输入的浮点数的平方根倒数的首次近似值;而后重新将其作为原来的浮点数,以牛顿迭代法迭代,目前来看迭代一次即可满足要求,这个算法避免了大量的浮点计算,比直接使用浮点数除法要快四倍,大幅提升了平方根倒数运算的效率。

写完本文之后笔者真是思绪万千,别人家的技术讨论要不是由浅入深的编程之道,要不是直接碾压的神级代码,而对比我国IT圈最近的讨论热点则完全被什么员工离职倾向分析器据占据,我们是不是有点过于关注眼前的苟且了,希望笔者本文能让大家有多一分思考吧。

以上是关于举轻若重,于无声处听惊雷,微软大师级人物展示平平无奇的伟大算法的主要内容,如果未能解决你的问题,请参考以下文章

举轻若重,于无声处听惊雷,微软大师级人物展示平平无奇的伟大算法

举轻若重,于无声处听惊雷,微软大师级人物展示平平无奇的伟大算法

技术就是一层窗户纸-于无声处看大神

谷歌突然宣布:上帝的密码防线逐渐崩溃!人工智能有可能是人类文明史的终结!

人物-管理排行榜:世界最具影响力的十大管理大师

一堆有用或有趣的小工具,也许对你有所帮助