每天讲解一点PyTorch 17Spatial Affinity代码实现分析
Posted cv.exp
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了每天讲解一点PyTorch 17Spatial Affinity代码实现分析相关的知识,希望对你有一定的参考价值。
>>> import torch
>>> import torch.nn as nn
>>> fm_in = torch.randn(1,3,2,3)
>>> fm_in
tensor([[[[-0.1291, -0.0966, 0.0632],
[-0.1640, -0.2832, 1.0553]],
[[ 1.2854, 0.3400, 1.6823],
[ 0.1555, -1.2052, 0.1288]],
[[ 0.5609, 0.3766, 0.7720],
[-2.0410, 0.2177, 1.4301]]]])
>>>
>>> fm_in.shape
torch.Size([1, 3, 2, 3])
>>>
>>> fm_in = fm_in.view(fm_in.size(0), fm_in.size(1), -1)
>>> fm_in
tensor([[[-0.1291, -0.0966, 0.0632, -0.1640, -0.2832, 1.0553],
[ 1.2854, 0.3400, 1.6823, 0.1555, -1.2052, 0.1288],
[ 0.5609, 0.3766, 0.7720, -2.0410, 0.2177, 1.4301]]])
>>> fm_in.shape
torch.Size([1, 3, 6])
>>>
>>> pow_out = torch.pow(fm_in,2)
>>> pow_out
tensor([[[1.6674e-02, 9.3340e-03, 3.9945e-03, 2.6887e-02, 8.0227e-02,
1.1137e+00],
[1.6523e+00, 1.1559e-01, 2.8300e+00, 2.4166e-02, 1.4526e+00,
1.6588e-02],
[3.1456e-01, 1.4179e-01, 5.9594e-01, 4.1658e+00, 4.7385e-02,
2.0452e+00]]])
>>> pow_out.shape
torch.Size([1, 3, 6])
>>>
>>> sum_out = torch.sum(pow_out, 1)
>>> sum_out
tensor([[1.9836, 0.2667, 3.4300, 4.2168, 1.5802, 3.1755]])
>>> sum_out.shape
torch.Size([1, 6])
>>>
>>> sqrt_out = torch.sqrt(sum_out)
>>> sqrt_out
tensor([[1.4084, 0.5164, 1.8520, 2.0535, 1.2571, 1.7820]])
>>> sqrt_out.shape
torch.Size([1, 6])
>>>
>>> unsqueeze_out = sqrt_out.unsqueeze(1)
>>> unsqueeze_out
tensor([[[1.4084, 0.5164, 1.8520, 2.0535, 1.2571, 1.7820]]])
>>> unsqueeze_out.shape
torch.Size([1, 1, 6])
>>>
>>> expand_out = unsqueeze_out.expand(fm_in.shape)
>>> expand_out
tensor([[[1.4084, 0.5164, 1.8520, 2.0535, 1.2571, 1.7820],
[1.4084, 0.5164, 1.8520, 2.0535, 1.2571, 1.7820],
[1.4084, 0.5164, 1.8520, 2.0535, 1.2571, 1.7820]]])
>>>
>>> fm_in.shape
torch.Size([1, 3, 6])
>>> expand_out.shape
torch.Size([1, 3, 6])
>>>
>>> norm_fm_in = fm_in / (expand_out + 0.0000001)
>>> norm_fm_in
tensor([[[-0.0917, -0.1871, 0.0341, -0.0799, -0.2253, 0.5922],
[ 0.9127, 0.6583, 0.9083, 0.0757, -0.9588, 0.0723],
[ 0.3982, 0.7291, 0.4168, -0.9939, 0.1732, 0.8025]]])
>>> fm_in.shape
torch.Size([1, 3, 6])
>>> norm_fm_in.shape
torch.Size([1, 3, 6])
>>>
>>> transpose_out = norm_fm_in.transpose(1,2)
>>> transpose_out
tensor([[[-0.0917, 0.9127, 0.3982],
[-0.1871, 0.6583, 0.7291],
[ 0.0341, 0.9083, 0.4168],
[-0.0799, 0.0757, -0.9939],
[-0.2253, -0.9588, 0.1732],
[ 0.5922, 0.0723, 0.8025]]])
>>> transpose_out.shape
torch.Size([1, 6, 3])
>>>
>>> fm_out = transpose_out.bmm(norm_fm_in)
>>>
>>> fm_out
tensor([[[ 1.0000, 0.9083, 0.9919, -0.3194, -0.7854, 0.3313],
[ 0.9083, 1.0000, 0.8955, -0.6599, -0.4628, 0.5219],
[ 0.9919, 0.8955, 1.0000, -0.3483, -0.8064, 0.4204],
[-0.3194, -0.6599, -0.3483, 1.0000, -0.2267, -0.8395],
[-0.7854, -0.4628, -0.8064, -0.2267, 1.0000, -0.0638],
[ 0.3313, 0.5219, 0.4204, -0.8395, -0.0638, 1.0000]]])
>>> fm_out.shape
torch.Size([1, 6, 6])
>>>
>>> fm_out = fm_out.unsqueeze(1)
>>> fm_out.shape
torch.Size([1, 1, 6, 6])
>>>
>>> fm_out
tensor([[[[ 1.0000, 0.9083, 0.9919, -0.3194, -0.7854, 0.3313],
[ 0.9083, 1.0000, 0.8955, -0.6599, -0.4628, 0.5219],
[ 0.9919, 0.8955, 1.0000, -0.3483, -0.8064, 0.4204],
[-0.3194, -0.6599, -0.3483, 1.0000, -0.2267, -0.8395],
[-0.7854, -0.4628, -0.8064, -0.2267, 1.0000, -0.0638],
[ 0.3313, 0.5219, 0.4204, -0.8395, -0.0638, 1.0000]]]])
>>>
以上是关于每天讲解一点PyTorch 17Spatial Affinity代码实现分析的主要内容,如果未能解决你的问题,请参考以下文章