权重计算方法三:变异系数法(Coefficient of Variation)
Posted 离陌lm
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了权重计算方法三:变异系数法(Coefficient of Variation)相关的知识,希望对你有一定的参考价值。
目录
1.原理简介
变异系数法是根据统计学方法计算得出系统各指标变化程度的方法,是直接利用各项指标所包含的信息,通过计算得到指标的权重,因此是一种客观赋权的方法。
变异系数法根据各评价指标当前值与目标值的变异程度来对各指标进行赋权,若某项指标的数值差异较大,能明确区分开各被评价对象,说明该指标的分辨信息丰富,因而应给该指标以较大的权重;反之,若各个被评价对象在某项指标上的数值差异较小,那么这项指标区分各评价对象的能力较弱,因而应给该指标较小的权重。
2.步骤详解
2.1 原始数据收集
假设一组数据中有m个指标,n条待评价样本,即一个n*m的矩阵,令其为X。其中xij表示第i行第j列的数据。
2.2 指标数据正向化
指标正向化的目的就是把所有的指标都转换为正向指标。
正向指标:又叫越大越优型指标,即该指标下的数据数值越大越好,例如成绩。
负向指标:又叫越小越优型指标,即该指标下的数据数值越小越好,例如排名。
对于正向指标:保持其原数据不变。
对于负向指标:采用如下方法。
其中k为指定的任意系数,其值可为0.1,0.2等; max|xj|表示第 j 列数据(指标)绝对值的最大值。
2.3 数据标准化(消除量纲)
由于不同的指标数据的单位不同,因此无法直接对其进行计算,而数据标准化的目的就是消除单位的影响,使所有数据都能够用同一种方法对其进行计算。令标准化后的数据矩阵为R.
2.4 计算变异系数
计算每个指标的均值:
计算每个指标的标准差(均方差):
因为标准差可以描述取值的离散程度,即某指标的方差反映了该指标的的分辨能力, 所以可用标准差定义指标的权重。
计算每个指标的变异系数:
2.5 计算权重及得分
权重:
得分:
3.案例分析
假设有以下数据,x1~x7为指标,ABC为三条待评价对象,其中x1和x4为负向指标,其余为正向指标。
x1 | x2 | x3 | x4 | x5 | x6 | x7 | |
A | 0.743 | 0.8267 | 0.8324 | 12 | 0.8637 | 0.0743 | 0.0409 |
B | 0.7567 | 0.8033 | 0.8736 | -10 | 0.8538 | -0.0665 | 0.0716 |
C | 0.8104 | 0.7667 | 0.8539 | 16 | 0.9038 | 0.0881 | 0.0657 |
3.1 获取原始数据
这里采用jxl包读取Excel。
//读取数据
public double[][] read(String filepath) throws IOException, BiffException,WriteException
//创建输入流
InputStream stream = new FileInputStream(filepath);
//获取Excel文件对象
Workbook rwb = Workbook.getWorkbook(stream);
//获取文件的指定工作表 默认的第一个
Sheet sheet = rwb.getSheet("Sheet1");
rows = sheet.getRows();
cols = sheet.getColumns();
orig = new double[rows][cols];
pos = new double[rows][cols];
stand = new double[rows][cols];
//row为行
for(int i=0;i<sheet.getRows();i++)
for(int j=0;j<sheet.getColumns();j++)
String[] str = new String[sheet.getColumns()];
Cell cell = null;
cell = sheet.getCell(j,i);
str[j] = cell.getContents();
orig[i][j] = Double.valueOf(str[j]);
//uniform[i][j] = Double.valueOf(str[j]);
return orig;
输出:
3.2 指标正向化
在此只需要对负向指标进行处理,正向指标保持原数据不变。
//指标正向化
public double[][] positive(double[][] or)
double k=0.1;
pos=or;
List<Integer> neg=new ArrayList<Integer>();//存储逆向指标所在列
System.out.println("是否有逆向指标(越小越优型指标)?是:1否:2");
int a=input.nextInt();
double[] max=getMax(or);
if(a==1)
System.out.println("输入逆向指标所在列(以“/”结尾):");
while(!input.hasNext("/"))
neg.add(Integer.valueOf(input.nextInt()));
for(int i=0;i<orig.length;i++)
for(int j=0;j<neg.size();j++)
pos[i][neg.get(j)]=1/(k+max[neg.get(j)]+or[i][neg.get(j)]);
return pos;
输出:
3.3 数据标准化
//数据标准化
public double[][] standar(double[][] p)
double[] sum=new double[p[0].length];
for(int i=0;i<p.length;i++)
for(int j=0;j<p[0].length;j++)
sum[j] += p[i][j]*p[i][j];
for(int i=0;i<p.length;i++)
for(int j=0;j<p[0].length;j++)
stand[i][j] = p[i][j]/(Math.sqrt(sum[j]));
return stand;
输出;
3.4 计算变异系数
//均值
double[] sum=new double[st[0].length];
for(int j=0;j<st[0].length;j++)
for(int i=0;i<st.length;i++)
sum[j] += st[i][j];
A[j]=sum[j]/st.length;
//标准差
double[] sum1=new double[st[0].length];
for(int j=0;j<st[0].length;j++)
for(int i=0;i<st.length;i++)
sum1[j] += (st[i][j]-A[j])*(st[i][j]-A[j]);
S[j]=Math.sqrt(sum1[j]/st.length);
//变异系数
for(int j=0;j<st[0].length;j++)
V[j]=S[j]/A[j];
输出:
3.5 计算权重
//各指标权重
double sumv=0;
for(int j=0;j<st[0].length;j++)
sumv += V[j];
for(int j=0;j<st[0].length;j++)
wi[j] = V[j]/sumv;
输出:
4.完整代码(Java)
4.1 方法类CoV.java
/*
* 假设有m个方案,n个指标,憨憨为方案,列为指标
* 变异系数法(Coefficient of variation method)计算步骤
* 1.指标正向化:都转换为正向指标(越大越优型指标)
* 2.数据标准化:消除负数和量纲影响
* 3.计算变异系数:Aj(指标均值),Sj(指标标准差),则变异系数Vj=Sj/Aj
* 4.计算权重:Wj=Vj/sum(Vj)
*/
package CoV;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.WriteException;
public class CoV
private double[][] orig; //原始矩阵
private double[][] pos;//正向化矩阵
private double[][] stand;//标准化后的矩阵
int rows,cols;//存储Excel的行和列数
Scanner input = new Scanner(System.in);
//矩阵每列绝对值最大值
public double[] getMax(double[][] m)
double max[] = new double[m[0].length];
for(int j=0;j < m[0].length;j++)
max[j] = Math.abs(m[0][j]);
for(int i=0;i < m.length;i++)
if(Math.abs(m[i][j]) >= max[j])
max[j] = Math.abs(m[i][j]);
return max;
//输出二维矩阵
public void matrixoutput(double[][] x)
for(int i=0;i<x.length;i++)
for(int j=0;j<x[0].length;j++)
System.out.print(String.format("%.3f\\t", x[i][j]));
System.out.println();
//输出一维矩阵
public void matrixoutput1(double[] x)
for(int i=0;i<x.length;i++)
System.out.print(String.format("%.3f\\t", x[i]));
System.out.println();
//读取数据
public double[][] read(String filepath) throws IOException, BiffException,WriteException
//创建输入流
InputStream stream = new FileInputStream(filepath);
//获取Excel文件对象
Workbook rwb = Workbook.getWorkbook(stream);
//获取文件的指定工作表 默认的第一个
Sheet sheet = rwb.getSheet("Sheet1");
rows = sheet.getRows();
cols = sheet.getColumns();
orig = new double[rows][cols];
pos = new double[rows][cols];
stand = new double[rows][cols];
//row为行
for(int i=0;i<sheet.getRows();i++)
for(int j=0;j<sheet.getColumns();j++)
String[] str = new String[sheet.getColumns()];
Cell cell = null;
cell = sheet.getCell(j,i);
str[j] = cell.getContents();
orig[i][j] = Double.valueOf(str[j]);
//uniform[i][j] = Double.valueOf(str[j]);
return orig;
//指标正向化
public double[][] positive(double[][] or)
double k=0.1;
pos=or;
List<Integer> neg=new ArrayList<Integer>();//存储逆向指标所在列
System.out.println("是否有逆向指标(越小越优型指标)?是:1否:2");
int a=input.nextInt();
double[] max=getMax(or);
if(a==1)
System.out.println("输入逆向指标所在列(以“/”结尾):");
while(!input.hasNext("/"))
neg.add(Integer.valueOf(input.nextInt()));
for(int i=0;i<orig.length;i++)
for(int j=0;j<neg.size();j++)
pos[i][neg.get(j)]=1/(k+max[neg.get(j)]+or[i][neg.get(j)]);
return pos;
//数据标准化
public double[][] standar(double[][] p)
double[] sum=new double[p[0].length];
for(int i=0;i<p.length;i++)
for(int j=0;j<p[0].length;j++)
sum[j] += p[i][j]*p[i][j];
for(int i=0;i<p.length;i++)
for(int j=0;j<p[0].length;j++)
stand[i][j] = p[i][j]/(Math.sqrt(sum[j]));
return stand;
//计算变异系数、权重和得分
public double[][] weigth(double[][] st)
double[] A=new double[st[0].length];
double[] S=new double[st[0].length];
double[] V=new double[st[0].length];
double[] wi=new double[st[0].length];
double[][] W=new double[4][st[0].length];
//均值
double[] sum=new double[st[0].length];
for(int j=0;j<st[0].length;j++)
for(int i=0;i<st.length;i++)
sum[j] += st[i][j];
A[j]=sum[j]/st.length;
//标准差
double[] sum1=new double[st[0].length];
for(int j=0;j<st[0].length;j++)
for(int i=0;i<st.length;i++)
sum1[j] += (st[i][j]-A[j])*(st[i][j]-A[j]);
S[j]=Math.sqrt(sum1[j]/st.length);
//变异系数
for(int j=0;j<st[0].length;j++)
V[j]=S[j]/A[j];
//各指标权重
double sumv=0;
for(int j=0;j<st[0].length;j++)
sumv += V[j];
for(int j=0;j<st[0].length;j++)
wi[j] = V[j]/sumv;
for(int j=0;j<st[0].length;j++)
W[0][j] = A[j];
W[1][j] = S[j];
W[2][j] = V[j];
W[3][j] = wi[j];
return W;
4.2 主类CoVmain.java
package CoV;
import java.io.IOException;
import jxl.read.biff.BiffException;
import jxl.write.WriteException;
public class CoVmain
public static void main(String args[]) throws BiffException, WriteException, IOException
CoV cov=new CoV();
double[][] orig = cov.read("cov.xls");
//输出原始矩阵,行为评价对象,列为评价指标
System.out.println("原始矩阵为:");
cov.matrixoutput(orig);
double[][] pos = cov.positive(orig);
System.out.println("正向化矩阵为:");
cov.matrixoutput(pos);
double[][] stand = cov.standar(pos);
System.out.println("标准化矩阵为:");
cov.matrixoutput(stand);
double[][] W = cov.weigth(stand);
//输出每个指标的均值、标准差、变异系数和权重,依次按行排列
System.out.println("均值矩阵为:");
cov.matrixoutput1(W[0]);
System.out.println("标准差矩阵为:");
cov.matrixoutput1(W[1]);
System.out.println("变异系数矩阵为:");
cov.matrixoutput1(W[2]);
System.out.println("权重矩阵为:");
cov.matrixoutput1(W[3]);
数学建模MATLAB应用实战系列(九十)-变异系数法应用案例(附MATLAB和Python代码)
前言
以下为博主为大家精心准备的人工智能&算法精品专栏,需要的小伙伴可自行订阅
深度学习100例全系列详细教程 深度学习算法原理介绍及应用案例
tensorflow从入门到精通100讲 深度学习框架TensorFlow的应用案例
手把手教你ML机器学习算法源码全解析 机器学习算法解析及应用案例
数据挖掘算法解析指南 数据挖掘算法原理解析及应用案例
数据结构常见算法原理讲解 数据结构算法原理解析及应用
人工智能AI实战系列代码全解析 图像处理、自然语言处理实战案例解析
变异系数法也是用来赋权重的一种算法。前面一篇建模算法讲到熵权法,变异系数法和熵权法的思想很像,都是通过寻找数据本身的规律来赋权重的一种方法。
变异系数法是一种利用被评价对象指标的变异程度确定指标权
以上是关于权重计算方法三:变异系数法(Coefficient of Variation)的主要内容,如果未能解决你的问题,请参考以下文章
数学建模MATLAB应用实战系列(八十八)-组合权重法应用案例(附MATLAB和Python代码)
R语言复相关或者多重相关性系数计算实战:Multiple Correlation Coefficient
R语言构建logistic回归模型:模型系数(model coefficient)模型总结信息(summary)模型评估(偏差deviance计算伪R方计算( pseudo R-squared)