FPGA纯verilog实现任意分辨率视频输出显示,高度贴近真实项目,提供工程源码和技术支持
Posted 9527华安
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FPGA纯verilog实现任意分辨率视频输出显示,高度贴近真实项目,提供工程源码和技术支持相关的知识,希望对你有一定的参考价值。
目录
1、前言
本设计使用纯Verilog代码实现,重点在于基于AXI协议的DDR控制器的运用,理论上讲,只要有AXI协议的FPGA均可使用,比如Xilinx、国产紫光同创等;
本设计主要解决非VESA协议分辨率视频的显示问题,高度贴近真实项目,适用于医疗、竣工等图像相关项目。
2、视频显示的VESA协议
视频显示行业有一个国际标准,那就是VESA协议;
视频电子标准协会(Video Electronics Standards Association, VESA)是由代表来自世界各地的、享有投票权利的140多家成员公司的董事会领导的非盈利国际组织,总部设立于加利福尼亚州的Milpitas,自1989年创立以来,一直致力于制订并推广显示相关标准。
VESA标准详细规定了每一种输出分辨率的时钟和数据组成,FPGA设计输出视频时序时就是参考了VESA标准,比如1080P、720P等;
典型的VESA时序如下:
行显示时序:
HSYNC:行同步信号,当此信号有效的时候就表示开始显示新的一行数据;
册可以知道此信号是低电平有效还是高电平有效,图 为低电平有效。
HSPW:行同步信号宽度,也就是 HSYNC 信号持续时间。HSYNC 信号不是一个脉冲,而是需要持续一段时间才是有效的,单位为 CLK。
HBP:行显示后沿(或后肩),单位是 CLK。
HOZVAL:行有效显示区域,即显示一行数据所需的时间,假如屏幕分辨率为 1024*600,那么 HOZVAL 就是 1024,单位为 CLK。
HFP:行显示前沿(或前肩),单位是 CLK。
当 HSYNC 信号发出以后,需要等待 HSPW+HBP 个 CLK 时间才会接收到真正有效的像素数据。当显示完一行数据以后需要等待 HFP 个 CLK 时间才能发出下一个 HSYNC 信号,所以显示一行所需要的时间就是:HSPW + HBP + HOZVAL + HFP。
一帧图像就是由很多个行组成的,帧显示时序如图:
VSYNC:帧(场)同步信号,当此信号有效的时候就表示开始显示新的一帧数据;
VSPW:帧同步信号宽度,也就是 VSYNC 信号持续时间,单位为 1 行的时间。
VBP:帧显示后沿(或后肩),单位为 1 行的时间。
LINE:帧有效显示区域,即显示一帧数据所需的时间,假如屏幕分辨率为 1024*600,那么 LINE 就是600 行的时间。
VFP:帧显示前沿(或前肩),单位为 1 行的时间。
显示一帧所需要的时间就是:VSPW+VBP+LINE+VFP 个行时间,最终的计算公式:
T = (VSPW+VBP+LINE+VFP) * (HSPW + HBP + HOZVAL + HFP)
FPGA做图像输出显示必须遵守此协议;
3、VESA协议的bug
VESA协议定义了很多种分辨率,具体请查看手册;
但有个bug,加入我的视频分辨率是500x500这样的呢?在VESA协议找不到这样的分辨率,那我们怎么写输出分辨率的代码呢?
当然,这种问题怎么可能难道FPGA工程师呢,请往下面看。。。
4、FPGA实现任意分辨率视频输出显示
设计方案如下:
这里加入要输出的分辨率为500x500,VESA协议里没有;
我们设计输出分辨率为标准的1920x1080的VESA协议分辨率;
将分辨率为500x500的视频写入DDR3中做三帧缓存;
写数据是一行写1920个像素,但只有前500个是有效的数据;
一帧图像共写1080行这样的数据,但只有前500行是有效的;
读数据是直接读取1920x1080的图像;
但规定有效区域只有500x500,其他区域为黑色或者其他;
这样就达到了上图的输出效果;
即在1920x1080的黑色背景下输出500x500的视频;
由于ov5640摄像头500x500输出的效果不好,这是ov5640自身决定的,所以我们的工程采用ov5640摄像头缩放至800x800作为例子;
5、FDMA实现数据缓存
关于FDMA三帧缓存,请参考我之前写的文章点击查看:FDMA三帧缓存方案
这里,我们将FDMA做了修改,使得输入分辨率由原来的参数类型变为输入类型,这样的好处时方便配置;
6、vivado工程详解
开发板:Xilinx Artix7开发板;
开发环境:vivado2019.1;
输入:ov5640摄像头,分辨率800x800;
输出:HDMI,分辨率1920x1080;
工程BD如下:
这里,我们将FDMA做了修改,使得输入分辨率由原来的参数类型变为输入类型,这样的好处时方便配置;
工程代码架构如下:
顶层代码如下:
`timescale 1ns / 1ps
module top(
//ddr3
output [14:0]DDR3_0_addr,
output [2:0]DDR3_0_ba ,
output DDR3_0_cas_n ,
output [0:0]DDR3_0_ck_n ,
output [0:0]DDR3_0_ck_p ,
output [0:0]DDR3_0_cke ,
output [0:0]DDR3_0_cs_n ,
output [3:0]DDR3_0_dm ,
inout [31:0]DDR3_0_dq ,
inout [3:0]DDR3_0_dqs_n ,
inout [3:0]DDR3_0_dqs_p ,
output [0:0]DDR3_0_odt ,
output DDR3_0_ras_n ,
output DDR3_0_reset_n ,
output DDR3_0_we_n ,
input CLK_IN1_D_0_clk_n,
input CLK_IN1_D_0_clk_p,
output ddr3_ok ,
inout cmos_scl, //cmos i2c clock
inout cmos_sda, //cmos i2c data
input cmos_vsync, //cmos vsync
input cmos_href, //cmos hsync refrence,data valid
input cmos_pclk, //cmos pxiel clock
output cmos_xclk, //cmos externl clock
input [7:0]cmos_db, //cmos data
output cmos_rst_n, //cmos reset
output cmos_pwdn, //cmos power down
inout hdmi_scl , //HDMI I2C clock
inout hdmi_sda , //HDMI I2C data
//hdmi_out
output vout_hs , //horizontal synchronization for 9134
output vout_vs , //vertical synchronization for 9134
output vout_de , //data valid for 9134
output vout_clk , //clock for 9134
output[23:0] vout_data , //data for 9134
output hdmi_nreset
);
wire clk_25m ;
wire clk_200m ;
wire clk_hdmi ;
wire pll_resetn;
wire [0:0] resetn;
wire ud_r_0_ud_rclk;
wire [31:0] ud_r_0_ud_rdata;
wire ud_r_0_ud_rde;
wire ud_r_0_ud_rvs;
wire ud_w_0_ud_wclk;
wire [31:0] ud_w_0_ud_wdata;
wire ud_w_0_ud_wde;
wire ud_w_0_ud_wvs;
wire ui_clk_100m;
wire [9:0] lut_index;
wire [31:0] lut_data;
wire [9:0] lut_index_hdmi;
wire [31:0] lut_data_hdmi ;
wire [23:0] ov5640_rgb;
wire ov5640_de ;
wire ov5640_vs ;
wire o_data_req;
wire [23:0] i_rgb;
wire o_hs ;
wire o_vs ;
wire o_de ;
wire [23:0] o_rgb;
wire hdmi_clk_rstn;
assign hdmi_nreset =pll_resetn;
//assign hdmi_in_nreset=pll_resetn;
assign ud_w_0_ud_wclk =cmos_pclk ;
assign ud_w_0_ud_wvs =ov5640_vs ;
assign ud_w_0_ud_wde =ov5640_de ;
assign ud_w_0_ud_wdata=ov5640_rgb[7:0],ov5640_rgb[15:8],ov5640_rgb[23:16];
assign ud_r_0_ud_rclk=clk_hdmi;
assign ud_r_0_ud_rvs=o_vs;
assign ud_r_0_ud_rde=o_data_req;
assign i_rgb=ud_r_0_ud_rdata[23:0];
assign vout_clk=clk_hdmi;
assign vout_hs=o_hs;
assign vout_vs=o_vs;
assign vout_de=o_de;
assign vout_data=o_rgb;
assign cmos_rst_n = 1'b1;
assign cmos_pwdn = 1'b0;
i2c_config i2c_config_ov5640(
.rst (~pll_resetn ),
.clk (clk_200m ),
.clk_div_cnt (16'd500 ),
.i2c_addr_2byte (1'b1 ),
.lut_index (lut_index ),
.lut_dev_addr (lut_data[31:24]),
.lut_reg_addr (lut_data[23:8] ),
.lut_reg_data (lut_data[7:0] ),
.error ( ),
.done ( ),
.i2c_scl (cmos_scl ),
.i2c_sda (cmos_sda )
);
ov5640_reg_cfg #(
.DISPAY_H(800),
.DISPAY_V(800 )
)
u_ov5640_reg_cfg(
.lut_index(lut_index), //Look-up table address
.lut_data (lut_data ) //Device address (8bit I2C address), register address, register data
);
i2c_config i2c_config_hdmi(
.rst (~pll_resetn ),
.clk (clk_200m ),
.clk_div_cnt (16'd500 ),
.i2c_addr_2byte (1'b0 ),
.lut_index (lut_index_hdmi ),
.lut_dev_addr (lut_data_hdmi[31:24]),
.lut_reg_addr (lut_data_hdmi[23:8] ),
.lut_reg_data (lut_data_hdmi[7:0] ),
.error ( ),
.done ( ),
.i2c_scl (hdmi_scl ),
.i2c_sda (hdmi_sda )
);
lut_hdmi u_lut_hdmi(
.lut_index(lut_index_hdmi), //Look-up table address
.lut_data (lut_data_hdmi) //Device address (8bit I2C address), register address, register data
);
uiSensorRGB565 u_uiSensorRGB565(
.cmos_clk_i (clk_25m),//cmos senseor clock.
.rst_n_i (resetn ),//system reset.active low.
.cmos_pclk_i (cmos_pclk),//input pixel clock.
.cmos_href_i (cmos_href),//input pixel hs signal.
.cmos_vsync_i(cmos_vsync),//input pixel vs signal.
.cmos_data_i (cmos_db),//data.
.cmos_xclk_o (cmos_xclk),//output clock to cmos sensor.
.rgb_o (ov5640_rgb),
.de_o (ov5640_de ),
.vs_o (ov5640_vs ),
.hs_o ()
);
design_1_wrapper u_design_1_wrapper
(
.CLK_IN1_D_0_clk_n(CLK_IN1_D_0_clk_n),
.CLK_IN1_D_0_clk_p(CLK_IN1_D_0_clk_p),
.DDR3_0_addr (DDR3_0_addr ),
.DDR3_0_ba (DDR3_0_ba ),
.DDR3_0_cas_n (DDR3_0_cas_n ),
.DDR3_0_ck_n (DDR3_0_ck_n ),
.DDR3_0_ck_p (DDR3_0_ck_p ),
.DDR3_0_cke (DDR3_0_cke ),
.DDR3_0_cs_n (DDR3_0_cs_n ),
.DDR3_0_dm (DDR3_0_dm ),
.DDR3_0_dq (DDR3_0_dq ),
.DDR3_0_dqs_n (DDR3_0_dqs_n ),
.DDR3_0_dqs_p (DDR3_0_dqs_p ),
.DDR3_0_odt (DDR3_0_odt ),
.DDR3_0_ras_n (DDR3_0_ras_n ),
.DDR3_0_reset_n (DDR3_0_reset_n ),
.DDR3_0_we_n (DDR3_0_we_n ),
.clk_200m (clk_200m ),
.clk_hdmi (clk_hdmi ),
.ddr3_ok (ddr3_ok ),
.pll_resetn (pll_resetn ),
.resetn (resetn ),
.ud_r_0_ud_rclk (ud_r_0_ud_rclk ),
.ud_r_0_ud_rdata (ud_r_0_ud_rdata ),
.ud_r_0_ud_rde (ud_r_0_ud_rde ),
.ud_r_0_ud_rempty (ud_r_0_ud_rempty ),
.ud_r_0_ud_rvs (ud_r_0_ud_rvs ),
.ud_w_0_ud_wclk (ud_w_0_ud_wclk ),
.ud_w_0_ud_wdata (ud_w_0_ud_wdata ),
.ud_w_0_ud_wde (ud_w_0_ud_wde ),
.ud_w_0_ud_wfull (ud_w_0_ud_wfull ),
.ud_w_0_ud_wvs (ud_w_0_ud_wvs ),
.ui_clk_100m (ui_clk_100m ),
.clk_25m (clk_25m ),
.FDMA_XSIZE_0 (800 ),
.FDMA_YSIZE_0 (800 )
);
video_timing_control vga(
.i_clk (clk_hdmi ),
.i_rst_n (pll_resetn ),
.i_start_x (0),
.i_start_y (0),
.i_disp_h (800),
.i_disp_v (800),
.i_rgb (i_rgb ),
.o_hs (o_hs ),
.o_vs (o_vs ),
.o_de (o_de ),
.o_rgb (o_rgb ),
.o_data_req(o_data_req )
);
endmodule
7、上板调试验证并演示
输出静态展示和动态展示如下:
FPGA纯verilog实现任意分辨率视频输出显示,提供工程
8、福利:工程代码的获取
福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
FPGA/数字IC手撕代码3——通过纯verilog实现简单的ROM
深度学习/机器视觉/数字IC/FPGA/算法手撕代码目录总汇
目录
以上是关于FPGA纯verilog实现任意分辨率视频输出显示,高度贴近真实项目,提供工程源码和技术支持的主要内容,如果未能解决你的问题,请参考以下文章
FPGA纯verilog解码SDI视频 纯逻辑资源实现 提供2套工程源码和技术支持
FPGA纯verilog代码实现4路视频缩放拼接 提供工程源码和技术支持
FPGA纯verilog代码实现图像缩放,两种插值算法任意尺寸缩放,提供3套工程源码
FPGA纯verilog代码解码CameraLink视频,附带工程源码和技术支持