关联规则概述
Posted 马如林
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了关联规则概述相关的知识,希望对你有一定的参考价值。
关联规则是数据挖掘的重要方面。我概述如下:
概论
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。 关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。它在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。关联规则挖掘的一个典型例子是购物篮分析。关联规则研究有助于发现交易数据库中不同商品(项)之间的联系,找出顾客购买行为模式,如购买了某一商品对购买其他商品的影响。分析结果可以应用于商品货架布局、货存安排以及根据购买模式对用户进行分类。 Agrawal等于 1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题[20],以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。 最近也有独立于 Agrawal的频集方法的工作,以避免频集方法的一些缺陷,探索挖掘关联规则的新方法。也有一些工作注重于对挖掘到的模式的价值进行评估,他们提出的模型建议了一些值得考虑的研究方向。 基本概念 在1993年,R.Agrawal等人首次提出了关联规则的概念。支持度(support)和置信度(confidence)两个阈值是描述关联规则的两个重要概念,支持度反映关联规则在数据库中的重要性,置信度衡量关联规则的可信程度。如果某条规则同时满足最小支持度(min-support)和最小置信度(min-confidence),则称它为强关联规则。 关联规则种类 我们将关联规则按不同的情况进行分类: (1) 基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。例如:性别=“女”=>职业=“秘书” ,是布尔型关联规则;性别=“女”=>avg(收入)=2300,涉及的收入是数值类型,所以是一个数值型关联规则。 (2) 基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层次之间的多层关联规则。 (3) 基于规则中涉及到的数据的维数,关联规则可以分为单维的和多维的。在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。 关联规则挖掘的算法(1) 经典频集方法
Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,其核心方法是基于频集理论的递推方法。以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;提出各种变体,如泛化的关联规则、周期关联规则等,对关联规则的应用进行推广。 (2) 核心算法 Agrawal等在 1993年设计了一个基本算法,提出了挖掘关联规则的一个重要方法 — 这是一个基于两阶段频集思想的方法,将关联规则挖掘算法的设计可以分解为两个子问题: (1)找到所有支持度大于最小支持度的项集( Itemset),这些项集称为频集(Frequent Itemset)。 (2)使用第 1步找到的频集产生期望的规则。这里的第2步相对简单一点。如给定了一个频集Y=I1I2...Ik,k³2,Ij∈I,产生只包含集合I1,I2,...,Ik中的项的所有规则(最多k条),其中每一条规则的右部只有一项,(即形如[Y-Ii]ÞIi,"1£i£k),这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。其核心思想如下: (1) L1 = large 1-itemsets; (2) for (k=2; Lk-1¹F; k++) do begin (3) Ck=Apriori-gen(Lk-1); //新的候选集 (4) for all transactions tÎD do begin (5) Ct=subset(Ck,t); //事务 t中包含的候选集 (6) for all candidates cÎ Ct do (7) c.count++; (8) end (9) Lk=cÎ Ck |c.count³minsup (10) end (11) Answer=ÈkLk; 首先产生频繁 1-项集L1,然后是频繁2-项集L2,直到有某个r值使得Lr为空,这时算法停止。这里在第k次循环中,过程先产生候选k-项集的集合Ck,Ck中的每一个项集是对两个只有一个项不同的属于Lk-1的频集做一个(k-2)-连接来产生的。Ck中的项集是用来产生频集的候选集,最后的频集Lk必须是Ck的一个子集。Ck中的每个元素需在交易数据库中进行验证来决定其是否加入Lk,这里的验证过程是算法性能的一个瓶颈。这个方法要求多次扫描可能很大的交易数据库,即如果频集最多包含10个项,那么就需要扫描交易数据库10遍,这需要很大的I/O负载。 在论文中, Agrawal等引入了修剪技术(Pruning)来减小候选集Ck的大小,由此可以显著地改进生成所有频集算法的性能。算法中引入的修剪策略基于这样一个性质:一个项集是频集当且仅当它的所有子集都是频集。那么,如果Ck中某个候选项集有一个(k-1)-子集不属于Lk-1,则这个项集可以被修剪掉不再被考虑,这个修剪过程可以降低计算所有的候选集的支持度的代价。文[6]中,还引入杂凑树(Hash Tree)方法来有效地计算每个项集的支持度。
以上是关于关联规则概述的主要内容,如果未能解决你的问题,请参考以下文章
python实现apriori算法的关联规则之支持度置信度提升度
python实现apriori算法的关联规则之支持度置信度提升度
R语言使用apriori算法进行关联规则挖掘实战:关联规则概念频繁项集支持度(support)置信度(confidence)提升度(lift)apriori算法