高斯滤波(Gauss filtering)
Posted 半濠春水
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高斯滤波(Gauss filtering)相关的知识,希望对你有一定的参考价值。
1.概念介绍
高斯滤波是一种
线性平滑滤波
,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。
通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程
,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。
高斯滤波的具体操作
是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值
去替代模板中心像素点的值
。
对应均值滤波和方框滤波来说,其邻域内每个像素的权重是相等的。而在高斯滤波中,会将中心点的权重值加大,远离中心点的权重值减小
,在此基础上计算邻域内各个像素值不同权重的和。2.基本原理
在高斯滤波中,卷积核的值不再是1。例如,一个3×3的卷积核可能如图2-1所示。
图2-1 高斯滤波卷积核示例
在图2-2中,针对最左侧的图像内第4行第3列位置上像素值为226的像素点进行高斯卷积,其运算规则
为将该领域内的像素点按照不同的权重计算和。
图2-2 高斯卷积示例
在实际计算时,使用的卷积核如图2-3中的卷积核所示。
图2-3 实际计算中的卷积核
使用图2-3中的卷积核,针对第 4 行第 3 列位置上的像素值为 226 的像素点进行高斯滤波处理,计算方式为:
新值=(40×0.05+107×0.1+5×0.05)
+(198×0.1+226×0.4+223×0.1)
+(37×0.05+68×0.1+193×0.05)
=164
在实际使用中,高斯滤波使用的可能是不同大小的卷积核。例如,图2-4中分别是 3×3、5×5、7×7 大小的卷积核。在高斯滤波中,核的宽度和高度可以不相同,但是它们都必须是奇数
。
图2-4 不同大小的卷积核
每一种尺寸的卷积核都可以有多种不同形式的权重比例
。例如,同样是5×5的卷积核,可能是图2-5中所示的两种不同的权重比。
图2-5 同一尺寸的卷积核可以有不同的权重比
在实际计算中,卷积核是归一化处理的
,这种处理可以表示为图2-4最左侧的小数形式的卷积核,也可以表示为如图2-5所示的分数形式。
也要注意,在一些资料中,给出的卷积核并没有进行归一化,这时的卷积核可能表示为图2-4中间和右侧所示的卷积核,这样的卷积核是为了说明问题用的,实际使用时往往需要进行归一化。严格来讲,使用没有进行归一化处理的卷积核进行滤波,得到的结果往往是错误的
。3.函数语法
在 OpenCV 中,实现高斯滤波的函数是
cv2.GaussianBlur()
,该函数的语法格式是:
dst = cv2.GaussianBlur( src, ksize, sigmaX, sigmaY, borderType )
参数解析:
dst
:返回值,表示进行高斯滤波后得到的处理结果。
src
: 是需要处理的图像,即原始图像。它能够有任意数量的通道,并能对各个通道独立处理。图像深度应该是 CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F 中的一种。
ksize
: 是滤波核的大小。滤波核大小是指在滤波处理过程中其邻域图像的高度和宽度。需要注意,滤波核的值必须是奇数
。
sigmaX
:卷积核在水平方向上(X 轴方向)的标准差,其控制的是权重比例。如下图2-5 中是不同的 sigmaX 决定的卷积核,它们在水平方向上的标准差不同。
图2-5 不同的 sigmaX 决定的卷积核
sigmaY
:卷积核在垂直方向上(Y 轴方向)的标准差。如果将该值设置为 0,则只采用sigmaX 的值;如果 sigmaX 和 sigmaY 都是 0,则通过 ksize.width 和 ksize.height 计算得到。其中:
sigmaX = 0.3×[(ksize.width-1)×0.5-1] + 0.8
sigmaY = 0.3×[(ksize.height-1)×0.5-1] + 0.8
borderType
:边界样式,该值决定了以何种方式处理边界。一般情况下,不需要考虑该值,直接采用默认值即可。
在该函数中,sigmaY 和 borderType 是可选参数。sigmaX 是必选参数,但是可以将该参数设置为 0,让函数自己去计算 sigmaX 的具体值
。4.程序示例
针对一幅噪声图像进行高斯滤波,显示滤波的结果。
import cv2
Gn=cv2.imread("Gaussian_noise.jpg")
Gf=cv2.GaussianBlur(Gn,(3,3),0,0)
cv2.imshow("噪声图像",Gn)
cv2.imshow("高斯滤波处理结果图像",Gf)
cv2.waitKey()
cv2.destroyAllWindows()
程序运行后,其中图4-1是噪声图像,图4-2是高斯滤波后的处理结果图像。
图4-1 噪声图像
图4-2 高斯滤波处理结果图像
3.15matlab 高斯滤波,快速滤波
二维高斯函数具有旋转对称性,处理后不会对哪一个方向上的边缘进行了过多的滤波,因此相对其他滤波器,具有无法比拟的优越性。但是传统Gauss滤波随着图像尺寸的增加,运算复杂度呈平方上涨,因此需要对其优化改进。下面,分别介绍传统型,分解型和递归迭代型三种实现方法。
1 传统型
Gauss滤波首先需要构建一个Gauss滤波核,公式为:
Matlab实现代码:
dSigma =0.8; fK1=1.0/(2*dSigma*dSigma); fK2=fK1/pi; iSize = 5; step = floor(iSize/2 + 0.5); for i = 1 : iSize x=i-step; fTemp=fK2*exp(-x*x*fK1); for j = 1 : iSize y=j-step; model(x+step,y+step)=fTemp*exp(-y*y*fK1); end end dSum = sum(sum(model)); model = model/dSum; %Gauss核数值归一化
图1 Gauss滤波核(5*5大小)
接下来就是将输入图像和滤波核进行卷积操作。其实质就是对原始图像进行加权求和,把这个“和”赋给中心像素。对于一个2048*2048的图像,需要进行104734756次乘法运算,和104734756次加法运算,运算复杂度是很高的。
2 分解型
我们可以把一个二维Gauss核分解为两个一维高斯核,然后先对行做一次一维卷积,再对这个卷积结果做一次一维列卷积,得到的结果完全一模一样,而开销会小很多。
一维高斯核函数:
Matlab代码实现:
dSigma =0.8; fK1=1.0/(2*dSigma*dSigma); fK2=fK1/pi; iSize = 5; step = floor(iSize/2 + 0.5); for i = 1 : iSize x=i-step; fTemp=fK2*exp(-x*x*fK1); model(1,x+step) = fTemp; end dM = sum(model); model = model / dM;
图2 一维高斯滤波核(1*5大小)
一维卷积原理和二维卷积一样,只不过我们只需要将同一行或同一列上的数据,按位置一一加权求和,再把“和”赋给中心元素。
对于一个2048*2048的图像,需要进行41918464次乘法运算,和41918464次加法运算。相比传统运算量,只是前者的1/2.4985。如果遇到频繁计算Gauss滤波的算法,后者明显比前者速度快很多。
3 递归迭代型
第二种方法较第一种方法,虽然有了较大改善,但是任然复杂度较高。这里再介绍一种更快速的逼近Gauss滤波方法。
具体步骤分为两步:首先对图像做一次前向滤波,其次,对图像再做一次后向滤波。
Forward:
Backward:
qFactor = 5; b0Coeff = 1.57825 + (2.44413 * qFactor) + (1.4281 * qFactor * qFactor) + (0.422205 * qFactor * qFactor * qFactor); b1Coeff = (2.44413 * qFactor) + (2.85619 * qFactor * qFactor) + (1.26661 * qFactor * qFactor * qFactor); b2Coeff = (-1.4281 * qFactor * qFactor) + (-1.26661 * qFactor * qFactor * qFactor); b3Coeff = 0.422205 * qFactor * qFactor * qFactor; normalizationCoeff = 1 - ((b1Coeff + b2Coeff + b3Coeff) / b0Coeff); vDenCoeff = [b0Coeff, -b1Coeff, -b2Coeff, -b3Coeff] / b0Coeff; vXSignal = zeros(61, 1); vXSignal(31) = 10; vYSignal = filter(normalizationCoeff, vDenCoeff, vXSignal); vYSignal = filter(normalizationCoeff, vDenCoeff, vYSignal(end:-1:1)); figure(); plot(vYSignal);
参考资料:Recursive implementation of the Gaussian filter。 Ian T. Young,1995
http://dsp.stackexchange.com/questions/22075/recursive-implementation-of-the-gaussian-filter
以上是关于高斯滤波(Gauss filtering)的主要内容,如果未能解决你的问题,请参考以下文章