Pytorch+PyG实现GraphConv

Posted 海洋.之心

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pytorch+PyG实现GraphConv相关的知识,希望对你有一定的参考价值。

文章目录


前言

大家好,我是阿光。

本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.11.0
  • PyG版本:2.1.0

💥 项目专栏:【图神经网络代码实战目录】


本文我们将使用Pytorch + Pytorch Geometric来简易实现一个GraphConv,让新手可以理解如何PyG来搭建一个简易的图网络实例demo。

一、导入相关库

本项目我们需要结合两个库,一个是Pytorch,因为还需要按照torch的网络搭建模型进行书写,第二个是PyG,因为在torch中并没有关于图网络层的定义,所以需要torch_geometric这个库来定义一些图层。

import torch
import torch.nn.functional as F
import torch.nn as nn
import torch_geometric.nn as pyg_nn
from torch_geometric.datasets import Planetoid

二、加载Cora数据集

本文使用的数据集是比较经典的Cora数据集,它是一个根据科学论文之间相互引用关系而构建的Graph数据集合,论文分为7类,共2708篇。

  • Genetic_Algorithms
  • Neural_Networks
  • Probabilistic_Methods
  • Reinforcement_Learning
  • Rule_Learning
  • Theory

这个数据集是一个用于图节点分类的任务,数据集中只有一张图,这张图中含有2708个节点,10556条边,每个节点的特征维度为1433。

# 1.加载Cora数据集
dataset = Planetoid(root='./data/Cora', name='Cora')

三、定义GraphConv网络

这里我们就不重点介绍GraphConv网络了,相信大家能够掌握基本原理,本文我们使用的是PyG定义网络层,在PyG中已经定义好了 GraphConv 这个层,该层采用的就是GraphConv机制。

对于GraphConv的常用参数:

  • in_channels:每个样本的输入维度,就是每个节点的特征维度
  • out_channels:经过 GraphConv 后映射成的新的维度,就是经过 GraphConv 后每个节点的维度长度
  • aggr:对于邻居节点采用的聚合方式,默认为 add
  • bias:训练一个偏置b
# 2.定义GraphConv网络
class GraphConv(nn.Module):
    def __init__(self, num_node_features, num_classes):
        super(EdgeCNN, self).__init__()
        self.conv1 = pyg_nn.GraphConv(num_node_features, 16)
        self.conv2 = pyg_nn.GraphConv(16, num_classes)
        
    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index)
        
        return F.log_softmax(x, dim=1)

上面网络我们定义了两个 GraphConv 层,第一层的参数的输入维度就是初始每个节点的特征维度,输出维度是16。

第二个层的输入维度为16,输出维度为分类个数,因为我们需要对每个节点进行分类,最终加上softmax操作。

四、定义模型

下面就是定义了一些模型需要的参数,像学习率、迭代次数这些超参数,然后是模型的定义以及优化器及损失函数的定义,和pytorch定义网络是一样的。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
epochs = 200 # 学习轮数
lr = 0.0003 # 学习率
num_node_features = dataset.num_node_features # 每个节点的特征数
num_classes = dataset.num_classes # 每个节点的类别数
data = dataset[0].to(device) # Cora的一张图

# 3.定义模型
model = GraphConv(num_node_features, num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器
loss_function = nn.NLLLoss() # 损失函数

五、模型训练

模型训练部分也是和pytorch定义网络一样,因为都是需要经过前向传播、反向传播这些过程,对于损失、精度这些指标可以自己添加。

# 训练模式
model.train()

for epoch in range(epochs):
    optimizer.zero_grad()
    pred = model(data)
    
    loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失
    correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目
    acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度
    
    loss.backward()
    optimizer.step()
    
    if epoch % 20 == 0:
        print("【EPOCH: 】%s" % str(epoch + 1))
        print('训练损失为::.4f'.format(loss.item()), '训练精度为::.4f'.format(acc_train))

print('【Finished Training!】')

六、模型验证

下面就是模型验证阶段,在训练时我们是只使用了训练集,测试的时候我们使用的是测试集,注意这和传统网络测试不太一样,在图像分类一些经典任务中,我们是把数据集分成了两份,分别是训练集、测试集,但是在Cora这个数据集中并没有这样,它区分训练集还是测试集使用的是掩码机制,就是定义了一个和节点长度相同纬度的数组,该数组的每个位置为True或者False,标记着是否使用该节点的数据进行训练。

# 模型验证
model.eval()
pred = model(data)

# 训练集(使用了掩码)
correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()
acc_train = correct_count_train / data.train_mask.sum().item()
loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()

# 测试集
correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()
acc_test = correct_count_test / data.test_mask.sum().item()
loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()

print('Train Accuracy: :.4f'.format(acc_train), 'Train Loss: :.4f'.format(loss_train))
print('Test  Accuracy: :.4f'.format(acc_test), 'Test  Loss: :.4f'.format(loss_test))

七、结果

【EPOCH:1
训练损失为:2.0851 训练精度为:0.1643
【EPOCH:21
训练损失为:1.3334 训练精度为:0.6429
【EPOCH:41
训练损失为:0.9201 训练精度为:0.8286
【EPOCH:61
训练损失为:0.7243 训练精度为:0.9286
【EPOCH:81
训练损失为:0.5684 训练精度为:0.9500
【EPOCH:101
训练损失为:0.4254 训练精度为:0.9643
【EPOCH:121
训练损失为:0.3829 训练精度为:0.9643
【EPOCH:141
训练损失为:0.3739 训练精度为:0.9571
【EPOCH:161
训练损失为:0.3341 训练精度为:0.9714
【EPOCH:181
训练损失为:0.2468 训练精度为:1.0000
【Finished Training!】

>>>Train Accuracy: 1.0000 Train Loss: 0.3787
>>>Test  Accuracy: 0.3790 Test  Loss: 1.7529
训练集测试集
Accuracy1.00000.3790
Loss0.37871.7529

完整代码

import torch
import torch.nn.functional as F
import torch.nn as nn
import torch_geometric.nn as pyg_nn
from torch_geometric.datasets import Planetoid

# 1.加载Cora数据集
dataset = Planetoid(root='./data/Cora', name='Cora')

# 2.定义GraphConv网络
class GraphConv(nn.Module):
    def __init__(self, num_node_features, num_classes):
        super(EdgeCNN, self).__init__()
        self.conv1 = pyg_nn.GraphConv(num_node_features, 16)
        self.conv2 = pyg_nn.GraphConv(16, num_classes)
        
    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index)
        
        return F.log_softmax(x, dim=1)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
epochs = 200 # 学习轮数
lr = 0.0003 # 学习率
num_node_features = dataset.num_node_features # 每个节点的特征数
num_classes = dataset.num_classes # 每个节点的类别数
data = dataset[0].to(device) # Cora的一张图

# 3.定义模型
model = GraphConv(num_node_features, num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器
loss_function = nn.NLLLoss() # 损失函数

# 训练模式
model.train()

for epoch in range(epochs):
    optimizer.zero_grad()
    pred = model(data)
    
    loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失
    correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目
    acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度
    
    loss.backward()
    optimizer.step()
    
    if epoch % 20 == 0:
        print("【EPOCH: 】%s" % str(epoch + 1))
        print('训练损失为::.4f'.format(loss.item()), '训练精度为::.4f'.format(acc_train))

print('【Finished Training!】')

# 模型验证
model.eval()
pred = model(data)

# 训练集(使用了掩码)
correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()
acc_train = correct_count_train / data.train_mask.sum().item()
loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()

# 测试集
correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()
acc_test = correct_count_test / data.test_mask.sum().item()
loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()

print('Train Accuracy: :.4f'.format(acc_train), 'Train Loss: :.4f'.format(loss_train))
print('Test  Accuracy: :.4f'.format(acc_test), 'Test  Loss: :.4f'.format(loss_test))

PyTorch+PyG实现图神经网络经典模型目录

前言

大家好,我是阿光。

本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.11.0
  • PyG版本:2.1.0

🌠 『精品学习专栏导航帖』


对于本专栏的网络模型,分别使用了三种实现方式 PyG框架实现PyTorch实现Message Passing消息传递机制实现,小伙伴可以按照自己的能力以及需求学习不同的实现方式。

注意 🚨:本目录中已存在的链接博文已全部写好,例如 + (一):节点分类 这类带有删除线的文章表示正在更新中,如果写完会去掉删除线,点击出现404表示文章还没有发布,后续根据情况陆续发布。

🌈『目录』


📢 PyG算子、数据集介绍


📢 图神经网络常见任务与应用场景


📢 图嵌入学习(Graph Embedding)


📢 图池化(Graph Pooling)


📢 MLP


📢 GCN


📢 GAT


📢 GIN


📢 GraphSAGE


📢 EdgeCNN


📢 GraphConv


注意🚨:所有文章使用的图数据是经典的 Cora 数据集,定义的训练轮数(200轮)以及损失函数优化器都是一致的,由于图网络很容易过拟合导致训练集的分类精度达到 99.9%,所以下表中显示的数据都是基于测试集的。

AccuracyLoss
MLP0.18001.9587
GCN0.72001.3561
GAT0.78101.0362
GIN0.76500.9645
GraphSAGE0.70601.2712
EdgeCNN0.37901.7529
GraphConv0.60301.2378

以上是关于Pytorch+PyG实现GraphConv的主要内容,如果未能解决你的问题,请参考以下文章

Pytorch+PyG实现GCN(图卷积网络)

PyTorch+PyG实现图神经网络经典模型目录

PyG Temporal搭建STGCN实现多变量输入多变量输出时间序列预测

有关kaggle中更新cuda与pytorch的版本,并安装pyg

图机器学习 | PyG 安装配置记录

图机器学习 | PyG 安装配置记录