Android UI贝塞尔曲线 ⑥ ( 贝塞尔曲线递归算法原理 | 贝塞尔曲线递归算法实现 )

Posted 韩曙亮

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Android UI贝塞尔曲线 ⑥ ( 贝塞尔曲线递归算法原理 | 贝塞尔曲线递归算法实现 )相关的知识,希望对你有一定的参考价值。

文章目录


贝塞尔曲线参考 : https://github.com/venshine/BezierMaker





一、贝塞尔曲线递归算法



一阶贝塞尔曲线 ( 起止点 + 0 0 0 个控制点 = 2 2 2 个点 ) 是一条直线 , 贝塞尔曲线上的点就是直线上的点 ;

二阶贝塞尔曲线 ( 起止点 + 1 1 1 个控制点 = 3 3 3 个点 ) 由 2 2 2 条 一阶贝塞尔曲线 确定 ,

三阶贝塞尔曲线 ( 起止点 + 2 2 2 个控制点 = 4 4 4 个点 ) 由 2 2 2 条 二阶贝塞尔曲线 确定 ,

四阶贝塞尔曲线 ( 起止点 + 3 3 3 个控制点 = 5 5 5 个点 ) 由 2 2 2 条 三阶贝塞尔曲线 确定 ,

⋮ \\vdots

n n n阶贝塞尔曲线 ( 起止点 + n − 1 n-1 n1 个控制点 = n + 1 n + 1 n+1 个点 ) 由 2 2 2 n − 1 n-1 n1 阶贝塞尔曲线 确定 ;


贝塞尔曲线递推公式如下 :

P i k = P i , k = 0 ( 1 − t ) P i k − 1 + t P i + 1 k − 1 , k = 1 , 2 , ⋯   , n ; i = 0 , 1 , ⋯   , n − k P_i^k = \\begincases P_i , k = 0\\\\ (1-t)P_i^k-1 + tP_i + 1^k-1 , k = 1,2,\\cdots,n ; i = 0,1,\\cdots,n-k \\endcases Pik=Pi,k=0(1t)Pik1+tPi+1k1,k=1,2,,n;i=0,1,,nk


上述公式中 k + 1 k + 1 k+1 是贝塞尔曲线的阶数 , i i i 表示顶点序号 ;


根据上述 贝塞尔曲线递推公式 , 可以得到一个递归算法 , 算法核心公式如下 :

p ( i , j ) = ( 1 − u ) × p ( i − 1 , j ) + u × p ( i − 1 , j − 1 ) p(i, j) = (1-u) \\times p (i - 1, j) + u \\times p (i - 1 , j - 1) p(i,j)=(1u)×p(i1,j)+u×p(i1,j1)

上述递推公式中 , i i i 表示贝塞尔曲线的阶数 , j j j 表示贝塞尔曲线中的点个数 ( 包含起止点 + 控制点 ) , u u u 表示比例取值范围 0 0 0 ~ 1 1 1 ;

递归算法的递归终点是取到第 0 0 0 阶 ;





二、贝塞尔曲线递归算法实现



递归算法中最终的一阶贝塞尔曲线上的点计算公式如下 :

p ( i , j ) = ( 1 − u ) × p ( i − 1 , j ) + u × p ( i − 1 , j − 1 ) p(i, j) = (1-u) \\times p (i - 1, j) + u \\times p (i - 1 , j - 1) p(i,j)=(1u)×p(i1,j)+u×p(i1,j1)

根据上述计算公式 , 得到如下代码 :

(1 - u) * mControlPoints.get(j).x + u * mControlPoints.get(j + 1).x

完整的贝塞尔曲线上的点坐标算法如下 :

  • BezierX 方法用于计算 贝塞尔曲线上的 X 轴坐标点 ;
  • BezierY 方法用于计算 贝塞尔曲线上的 Y 轴坐标点 ;
    // 贝塞尔曲线控制点集合
    private ArrayList<PointF> mControlPoints = new ArrayList<>();

    /**
     * 贝塞尔曲线递归算法, 本方法计算 X 轴坐标值
     * @param i 贝塞尔曲线阶数
     * @param j 贝塞尔曲线控制点
     * @param u 比例 / 时间 , 取值范围 0.0 ~ 1.0
     * @return
     */
    private float BezierX(int i, int j, float u) 
        if (i == 1) 
            // 递归退出条件 : 贝塞尔曲线阶数 降为一阶
            // 一阶贝塞尔曲线点坐标 计算如下 :
            return (1 - u) * mControlPoints.get(j).x + u * mControlPoints.get(j + 1).x;
        
        return (1 - u) * BezierX(i - 1, j, u) + u * BezierX(i - 1, j + 1, u);
    

    /**
     * 贝塞尔曲线递归算法, 本方法计算 Y 轴坐标值
     * @param i 贝塞尔曲线阶数
     * @param j 贝塞尔曲线控制点
     * @param u 比例 / 时间 , 取值范围 0.0 ~ 1.0
     * @return
     */
    private float BezierY(int i, int j, float u) 
        if (i == 1) 
            // 递归退出条件 : 贝塞尔曲线阶数 降为一阶
            return (1 - u) * mControlPoints.get(j).y + u * mControlPoints.get(j + 1).y;
        
        return (1 - u) * BezierY(i - 1, j, u) + u * BezierY(i - 1, j + 1, u);
    

以上是关于Android UI贝塞尔曲线 ⑥ ( 贝塞尔曲线递归算法原理 | 贝塞尔曲线递归算法实现 )的主要内容,如果未能解决你的问题,请参考以下文章

Android UI贝塞尔曲线 ③ ( 贝塞尔曲线关键点坐标记录 | 二阶贝塞尔曲线示例 )

Android UI贝塞尔曲线 ② ( 二阶贝塞尔曲线公式 | 三阶贝塞尔曲线及公式 | 高阶贝塞尔曲线 )

Android UI贝塞尔曲线 ⑤ ( 德卡斯特里奥算法 | 贝塞尔曲线递推公式 )

Android UI贝塞尔曲线 ④ ( 使用 android.graphics.Path 提供的 cubicTo 方法绘制三阶贝塞尔曲线示例 )

Android UI贝塞尔曲线 ⑦ ( 使用 德卡斯特里奥算法 公式计算的 方法绘制三阶贝塞尔曲线示例 )

Android 高级UI解密 :花式玩转贝塞尔曲线(波浪轨迹变换动画)