什么是ROC曲线?为什么要使用ROC?以及 AUC的计算
Posted 静待花开s0
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了什么是ROC曲线?为什么要使用ROC?以及 AUC的计算相关的知识,希望对你有一定的参考价值。
一、ROC简介
ROC的全名叫做Receiver Operating Characteristic,中文名字叫“受试者工作特征曲线”,其主要分析工具是一个画在二维平面上的曲线——ROC 曲线。平面的横坐标是false positive rate(FPR),纵坐标是true positive rate(TPR)。对某个分类器而言,我们可以根据其在测试样本上的表现得到一个TPR和FPR点对。这样,此分类器就可以映射成ROC平面上的一个点。调整这个分类器分类时候使用的阈值,我们就可以得到一个经过(0, 0),(1, 1)的曲线,这就是此分类器的ROC曲线。
一般情况下,这个曲线都应该处于(0, 0)和(1, 1)连线的上方。因为(0, 0)和(1, 1)连线形成的ROC曲线实际上代表的是一个随机分类器。如果很不幸,你得到一个位于此直线下方的分类器的话,一个直观的补救办法就是把所有的预测结果反向,即:分类器输出结果为正类,则最终分类的结果为负类,反之,则为正类。虽然,用ROC 曲线来表示分类器的性能很直观好用。
可是,人们总是希望能有一个数值来标志分类器的好坏。于是Area Under roc Curve(AUC)就出现了。顾名思义,AUC的值就是处于ROC 曲线下方的那部分面积的大小。
通常,AUC的值介于0.5到1.0之间,较大的AUC代表了较好的性能。AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准。
二、基本概念
解读ROC图的一些概念定义::
1. 四种分类
真正(True Positive , TP)被模型预测为正的正样本;
假负(False Negative , FN)被模型预测为负的正样本;
假正(False Positive , FP)被模型预测为正的负样本;
真负(True Negative , TN)被模型预测为负的负样本。
2. 横纵坐标解释
该曲线的横坐标为假阳性率(False Positive Rate, FPR),N是真实负样本的个数,
FP是N个负样本中被分类器预测为正样本的个数。
纵坐标为真阳性率(True Positive Rate, TPR),
P是真实正样本的个数,
TP是P个正样本中被分类器预测为正样本的个数。
3.混淆矩阵
对于二分类问题,可将样本根据其真实类别与学习器预测类别的组合划分为TP(true positive)、FP(false positive)、TN(true negative)、FN(false negative)四种情况,TP+FP+TN+FN=样本总数。
三、为什么要选择ROC?
既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。下图是ROC曲线和Precision-Recall曲线的对比:
其中第一行ab均为原数据的图,左边为ROC曲线,右边为P-R曲线。第二行cd为负样本增大10倍后俩个曲线的图。可以看出,ROC曲线基本没有变化,但P-R曲线确剧烈震荡。因此,在面对正负样本数量不均衡的场景下,ROC曲线(AUC的值)会是一个更加稳定能反映模型好坏的指标。
四、AUC作为评价标准
1. AUC (Area Under Curve)
被定义为ROC曲线下的面积,取值范围一般在0.5和1之间。使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。
2.AUC 的计算方法
非参数法:(两种方法实际证明是一致的)
(1)梯形法则:早期由于测试样本有限,我们得到的AUC曲线呈阶梯状。曲线上的每个点向X轴做垂线,得到若干梯形,这些梯形面积之和也就是AUC 。
(2)Mann-Whitney统计量: 统计正负样本对中,有多少个组中的正样本的概率大于负样本的概率。这种估计随着样本规模的扩大而逐渐逼近真实值。
参数法:
(3)主要适用于二项分布的数据,即正反样本分布符合正态分布,可以通过均值和方差来计算。
3.从AUC判断分类器(预测模型)优劣的标准
· AUC = 1,是完美分类器,采用这个预测模型时,存在至少一个阈值能得出完美预测。绝大多数预测的场合,不存在完美分类器。
· 0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
· AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
· AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。
三种AUC值示例:
总结:AUC值越大的分类器,正确率越高
4. 不同模型AUC的比较
总的来说,AUC值越大,模型的分类效果越好,疾病检测越准确;不过两个模型AUC值相等并不代表模型效果相同,例子如下:
下图中有三条ROC曲线,A模型比B和C都要好
下面两幅图中两条ROC曲线相交于一点,AUC值几乎一样:当需要高Sensitivity时,模型A比B好;当需要高Speciticity时,模型B比A好
参考:
1.https://www.jianshu.com/p/2ca96fce7e81
2.https://www.plob.org/article/12476.html
以上是关于什么是ROC曲线?为什么要使用ROC?以及 AUC的计算的主要内容,如果未能解决你的问题,请参考以下文章