Spark读写Hive添加PMML支持

Posted fansy1990

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark读写Hive添加PMML支持相关的知识,希望对你有一定的参考价值。

软件版本:

CDH:5.8.0;Hadoop:2.6.0 ; Spark:1.6.0; Hive:1.1.0;JDK:1.7 ; SDK:2.10.6(Scala)

工程下载:https://github.com/fansy1990/spark_hive_source_destination/releases/tag/V1.1

目标:

在Spark加载PMML文件处理数据(参考:http://blog.csdn.net/fansy1990/article/details/53293024)及Spark读写Hive(http://blog.csdn.net/fansy1990/article/details/53401102)的基础上,整合这两个操作,即使用Spark读取Hive表数据,然后加载PMML文件到模型,使用模型对读取对Hive数据进行处理,得到新的数据,写入到新的Hive表。

实现:

1. 工程pom文件,工程pom文件添加了spark、spark-hive以及pmml的依赖支持,如下:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>cdh5.7.3</groupId>
  <artifactId>spark_hive</artifactId>
  <version>1.0-SNAPSHOT</version>
  <inceptionYear>2008</inceptionYear>

    <properties>
        <scala.version>2.10.6</scala.version>
        <spark.version>1.6.0-cdh5.7.3</spark.version>
  </properties>

  <repositories>
      <repository>
          <id>cloudera</id>
          <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
      </repository>

  </repositories>

  <dependencies>
      <!-- Spark  -->
      <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-core_2.10</artifactId>
          <version>$spark.version</version>
      </dependency>
      <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-mllib_2.10</artifactId>
          <version>$spark.version</version>
          <exclusions>
              <exclusion>
                  <groupId>org.jpmml</groupId>
                  <artifactId>pmml-model</artifactId>
              </exclusion>
          </exclusions>
      </dependency>
      <dependency>
          <groupId>org.jpmml</groupId>
          <artifactId>pmml-evaluator</artifactId>
          <version>1.2.15</version>
      </dependency>

      <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-hive_2.10</artifactId>
          <version>$spark.version</version>
      </dependency>

    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.10</version>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>org.specs</groupId>
      <artifactId>specs</artifactId>
      <version>1.2.5</version>
      <scope>test</scope>
    </dependency>
  </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <testSourceDirectory>src/test/scala</testSourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.scala-tools</groupId>
                <artifactId>maven-scala-plugin</artifactId>
                <version>2.15.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
                <configuration>
                    <scalaVersion>$scala.version</scalaVersion>
                    <args>
                        <arg>-target:jvm-1.7</arg>
                    </args>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.4.2</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <createDependencyReducedPom>false</createDependencyReducedPom>
                            <finalName>example-$project.version</finalName>
                            <artifactSet>
                                <excludes>
                                    <exclude>oro*</exclude>
                                    <exclude>org.apache.*:*</exclude>
                                    <exclude>junit:junit</exclude>
                                    <exclude>org.sc*</exclude>
                                    <exclude>org.sp*</exclude>
                                    <exclude>org.sl*</exclude>
                                    <exclude>org.r*</exclude>
                                    <exclude>org.c*</exclude>
                                    <exclude>org.t*</exclude>
                                    <exclude>org.e*</exclude>
                                    <exclude>org.u*</exclude>
                                    <exclude>org.x*</exclude>
                                    <exclude>org.js*</exclude>
                                    <exclude>org.jo*</exclude>
                                    <exclude>org.f*</exclude>
                                    <exclude>org.m*</exclude>
                                    <exclude>org.o*</exclude>
                                    <exclude>*:xml-apis</exclude>
                                    <exclude>log4j*</exclude>
                                    <exclude>org.antlr*</exclude>
                                    <exclude>org.datanucleus*</exclude>


                                    <exclude>net*</exclude>
                                    <exclude>commons*</exclude>
                                    <exclude>com.j*</exclude>
                                    <exclude>com.x*</exclude>
                                    <exclude>com.n*</exclude>
                                    <exclude>com.i*</exclude>
                                    <exclude>com.t*</exclude>
                                    <exclude>com.c*</exclude>
                                    <exclude>com.gi*</exclude>
                                    <exclude>com.google.code*</exclude>
                                    <exclude>com.google.p*</exclude>
                                    <exclude>com.f*</exclude>
                                   <exclude>com.su*</exclude>
                                    <exclude>com.a*</exclude>
                                    <exclude>com.e*</exclude>
                                    <exclude>javax*</exclude>
                                    <exclude>s*</exclude>
                                    <exclude>i*</exclude>
                                    <exclude>j*</exclude>
                                    <exclude>a*</exclude>
                                    <exclude>x*</exclude>
                                </excludes>
                            </artifactSet>
                            <relocations>
                                <relocation>
                                    <pattern>com.google.common</pattern>
                                    <shadedPattern>com.shaded.google.common</shadedPattern>
                                </relocation>
                                <relocation>
                                    <pattern>org.dmg.pmml</pattern>
                                    <shadedPattern>org.shaded.dmg.pmml</shadedPattern>
                                </relocation>
                                <relocation>
                                    <pattern>org.jpmml.agent</pattern>
                                    <shadedPattern>org.shaded.jpmml.agent</shadedPattern>
                                </relocation>
                                <relocation>
                                    <pattern>org.jpmml.model</pattern>
                                    <shadedPattern>org.shaded.jpmml.model</shadedPattern>
                                </relocation>
                                <relocation>
                                    <pattern>org.jpmml.schema</pattern>
                                    <shadedPattern>org.shaded.jpmml.schema</shadedPattern>
                                </relocation>
                            </relocations>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>

    </build>
</project>
在pom文件中,使用了maven的shade插件,这个插件可以把jpmml的相关依赖包一起打包,这样在spark平台调用的时候就不会出现类找不到的错误了;同时,因为很多jar包是spark平台自有的,所以不需要一起打包,这里加了excludes过滤。

2. 测试环境构建:

1)首先是生成pmml文件,这个文件已经由其他程序生成,如下:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>  
<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2">  
    <Header description="linear SVM">  
        <Application name="Apache Spark MLlib"/>  
        <Timestamp>2016-11-16T22:17:47</Timestamp>  
    </Header>  
    <DataDictionary numberOfFields="4">  
        <DataField name="field_0" optype="continuous" dataType="double"/>  
        <DataField name="field_1" optype="continuous" dataType="double"/>  
        <DataField name="field_2" optype="continuous" dataType="double"/>  
        <DataField name="target" optype="categorical" dataType="string"/>  
    </DataDictionary>  
    <RegressionModel modelName="linear SVM" functionName="classification" normalizationMethod="none">  
        <MiningSchema>  
            <MiningField name="field_0" usageType="active"/>  
            <MiningField name="field_1" usageType="active"/>  
            <MiningField name="field_2" usageType="active"/>  
            <MiningField name="target" usageType="target"/>  
        </MiningSchema>  
        <RegressionTable intercept="0.0" targetCategory="1">  
            <NumericPredictor name="field_0" coefficient="-0.36682158807862086"/>  
            <NumericPredictor name="field_1" coefficient="3.8787681305811765"/>  
            <NumericPredictor name="field_2" coefficient="-1.6134308474471166"/>  
        </RegressionTable>  
        <RegressionTable intercept="0.0" targetCategory="0"/>  
    </RegressionModel>  
</PMML>  

2)准备hive表及表数据:

-- field_0,field_1,field_2
-- 98,97,96
create table svm (
   field_0 double ,
    field_1 double,
    field_2 double
)
ROW FORMAT DELIMITED
   FIELDS TERMINATED BY ','
   STORED AS TEXTFILE;

-- import data , get ride of first line
load data  inpath 'svm.data' into table svm;
导入后,得到的hive表及表数据:


3) 编译及打包:下载工程后,先执行build-》Make project,看到target目录下生成classes文件,如下:

因为使用了java和scala混合编程,所以这里需要先编译,然后在执行maven的package命令,这样的到的jar包才会包含pmml-spark的相关class文件,并且由于这里没有引入pmml-spark的依赖,只是把其源码放到这里而已,所以需要这样做,打包后,得到target目录下的所需jar包;

4)调用:

直接使用spark-submit的方式进行调用,其命令如下:

spark-submit --class pmml.SparkReadWriteHiveWithPMML --master yarn --deploy-mode cluster --jars /usr/lib/hive/lib/datanucleus-core-3.2.10.jar --files /usr/lib/hive/conf/hive-site.xml example-1.0-SNAPSHOT.jar svm tmp4 /tmp/svm.pmml

如果输出表存在,那么会报错(如tmp4存在):

5)查看结果:

首先是yarn任务,如下:


接着是hive中的表,如下:

从hive表中可以看到数据被pmml模型正确的预测得到了。

总结:

1. Hive表如果使用分区表情况会比较复杂,暂时没有验证过;

2. 如果hive表已经存在,那么会出现异常,是否可以考虑在代码中把输出的表删掉?

3. pmml-spark依赖是否可以直接写入pom文件,而不需要把源码放入工程?



如果您觉得lz的文章还行,并且您愿意动动手指,可以为我投上您的宝贵一票!谢谢!

http://blog.csdn.net/vote/candidate.html?username=fansy1990




以上是关于Spark读写Hive添加PMML支持的主要内容,如果未能解决你的问题,请参考以下文章

如何在 Apache Spark 中添加 Hive 支持? [复制]

Spark ml 和 PMML 导出

Apache Spark MLlib:如何从 PMML 导入模型

spark sql读写hive的过程

sklearn中,继承TransformerMixin实现自定义类放入DataFrameMapper,sklearn2pmml生成pmml报错

使用 PySpark 将模型导出为 PMML