win10+RTX3050ti+TensorFlow+cudn+cudnn配置深度学习环境

Posted 末世灯光

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了win10+RTX3050ti+TensorFlow+cudn+cudnn配置深度学习环境相关的知识,希望对你有一定的参考价值。

避坑1:RTX30系列显卡不支持cuda11.0以下版本,具体上限版本可自行查阅:

方法一,在cmd中输入nvidia-smi查看

方法二:

 

 

由此可以看出本电脑最高适配cuda11.2.1版本;

 

注意需要版本适配,这里我们选择TensorFlow-gpu = 2.5,cuda=11.2.1,cudnn=8.1,python3.7

接下来可以下载cudn和cundnn:

官网:https://developer.nvidia.com/cuda-toolkit-archive

 下载对应版本exe文件打开默认安装就可;

验证是否安装成功:

 

官网:cuDNN Archive | NVIDIA Developer

把下载文件进行解压把bin+lib+include文件复制到C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.2文件下;

进入环境变量设置(cuda会自动设置,如果没有的补全):

查看是否安装成功:

cd C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.2\\extras\\demo_suite
bandwidthTest.exe

 

 安装tensorflow-gpu:

pip install tensorflow-gpu==2.5

最后我们找相关程序来验证一下:

第一步:

import tensorflow as tf
print(tf.__version__)
print('GPU', tf.test.is_gpu_available())

第二步:

# _*_ coding=utf-8 _*_
'''
@author: crazy jums
@time: 2021-01-24 20:55
@desc: 添加描述
'''
# 指定GPU训练
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"  ##表示使用GPU编号为0的GPU进行计算

import numpy as np
from tensorflow.keras.models import Sequential  # 采用贯序模型
from tensorflow.keras.layers import Dense, Dropout, Conv2D, MaxPool2D, Flatten
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import TensorBoard
import time



def create_model():
    model = Sequential()
    model.add(Conv2D(32, (5, 5), activation='relu', input_shape=[28, 28, 1]))  # 第一卷积层
    model.add(Conv2D(64, (5, 5), activation='relu'))  # 第二卷积层
    model.add(MaxPool2D(pool_size=(2, 2)))  # 池化层
    model.add(Flatten())  # 平铺层
    model.add(Dropout(0.5))
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    return model


def compile_model(model):
    model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['acc'])
    return model


def train_model(model, x_train, y_train, batch_size=32, epochs=10):

    tbCallBack = TensorBoard(log_dir="model", histogram_freq=1, write_grads=True)
    history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, shuffle=True, verbose=2,
                        validation_split=0.2, callbacks=[tbCallBack])
    return history, model


if __name__ == "__main__":
    import tensorflow as tf
    print(tf.__version__)
    from tensorflow.python.client import device_lib
    print(device_lib.list_local_devices())


    (x_train, y_train), (x_test, y_test) = mnist.load_data()  # mnist的数据我自己已经下载好了的
    print(np.shape(x_train), np.shape(y_train), np.shape(x_test), np.shape(y_test))

    x_train = np.expand_dims(x_train, axis=3)
    x_test = np.expand_dims(x_test, axis=3)
    y_train = to_categorical(y_train, num_classes=10)
    y_test = to_categorical(y_test, num_classes=10)
    print(np.shape(x_train), np.shape(y_train), np.shape(x_test), np.shape(y_test))

    model = create_model()
    model = compile_model(model)
    print("start training")
    ts = time.time()
    history, model = train_model(model, x_train, y_train, epochs=2)
    print("start training", time.time() - ts)

 

验证成功。

 这些资料请关注微信公众号:小王搬运工,后台回复22617,获取百度网盘链接。

 

 

以上是关于win10+RTX3050ti+TensorFlow+cudn+cudnn配置深度学习环境的主要内容,如果未能解决你的问题,请参考以下文章

稳了!AIDA64添加对RTX 3080 Ti/3060/RTX 3050识别支持

硬件资讯不能挖矿的真甜品曝光!Nvidia 3050/3050ti跑分泄露!这样的性能提升你怎么看?

AIDA64更新说明透露了大量未发布的RTX显卡,从RTX 3080 Ti到RTX 3050

完美胜任1080P游戏,RTX 3050 Ti笔记本电脑GPU性能测试

限制挖矿的显卡来了,虚拟币降了!双重利好?某新显卡前瞻,RX6700 XT?RTX3050Ti?RTX3050?

RTX 3060突然改名RTX 3060 Ultra!12GB显存超过RTX 3080