pandas读取csv文件时避免科学计数法(xxxe+09)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas读取csv文件时避免科学计数法(xxxe+09)相关的知识,希望对你有一定的参考价值。
参考技术A 用pandas读取csv文件时,若其中的数值过长(超过16位)时,就会自动将数字转化成科学计数法,在某些任务中,这并不是一个好事。这里发现使用python的csv库来读取不会出现这个问题,具体操作如下:
构建 NetworkX 图时避免使用 NaN 属性
【中文标题】构建 NetworkX 图时避免使用 NaN 属性【英文标题】:Avoid NaN attributes when building NetworkX graph 【发布时间】:2019-08-14 07:09:58 【问题描述】:我想使用 pandas 读取包含节点及其属性的 csv 文件。并非所有节点都具有每个属性,缺少的属性只是从 csv 文件中丢失。当 pandas 读取 csv 文件时,缺失值显示为nan
。我想从数据框中批量添加节点,但避免添加nan
的属性。
例如,这里是一个名为mwe.csv
的示例csv文件:
Name,Cost,Depth,Class,Mean,SD,CST,SL,Time
Manuf_0001,39.00,1,Manuf,,,12,,10.00
Manuf_0002,36.00,1,Manuf,,,8,,10.00
Part_0001,12.00,2,Part,,,,,28.00
Part_0002,5.00,2,Part,,,,,15.00
Part_0003,9.00,2,Part,,,,,10.00
Retail_0001,0.00,0,Retail,253,36.62,0,0.95,0.00
Retail_0002,0.00,0,Retail,45,1,0,0.95,0.00
Retail_0003,0.00,0,Retail,75,2,0,0.95,0.00
这是我目前的处理方式:
import pandas as pd
import numpy as np
import networkx as nx
node_df = pd.read_csv('mwe.csv')
graph = nx.DiGraph()
graph.add_nodes_from(node_df['Name'])
nx.set_node_attributes(graph, dict(zip(node_df['Name'], node_df['Cost'])), 'nodeCost')
nx.set_node_attributes(graph, dict(zip(node_df['Name'], node_df['Mean'])), 'avgDemand')
nx.set_node_attributes(graph, dict(zip(node_df['Name'], node_df['SD'])), 'sdDemand')
nx.set_node_attributes(graph, dict(zip(node_df['Name'], node_df['CST'])), 'servTime')
nx.set_node_attributes(graph, dict(zip(node_df['Name'], node_df['SL'])), 'servLevel')
# Loop through all nodes and all attributes and remove NaNs.
for i in graph.nodes:
for k, v in list(graph.nodes[i].items()):
if np.isnan(v):
del graph.nodes[i][k]
它有效,但它很笨重。有没有更好的方法,例如在添加节点时避免nan
s,而不是之后删除nan
s?
【问题讨论】:
【参考方案1】:将 csv 导入 Pandas 时使用 keep_default_na
:
pd.read_csv('data.csv', keep_default_na=False)
Get pandas.read_csv to read empty values as empty string instead of nan
【讨论】:
【参考方案2】:在这种情况下,您可以利用 Pandas 的力量进行竞标。所以,我创建了这个函数,它将你的带有两个键和值列的 DataFrame 转换为一个系列,然后使用 NaN 删除元素,最后将其更改为字典
def create_node_attribs(key_col, val_col):
# Upto you if you want to pass the dataframe as argument
# In your case, since this was the only df, I only passed the columns
global node_df
return Series(node_df[val_col].values,
index=node_df[key_col]).dropna().to_dict()
这是完整的代码
import pandas as pd
import networkx as nx
from pandas import Series
node_df = pd.read_csv('mwe.csv')
graph = nx.DiGraph()
def create_node_attribs(key_col, val_col):
# Upto you if you want to pass the dataframe as argument
# In your case, since this was the only df, I only passed the columns
global node_df
return Series(node_df[val_col].values,
index=node_df[key_col]).dropna().to_dict()
graph.add_nodes_from(node_df['Name'])
nx.set_node_attributes(graph, create_node_attribs('Name', 'Cost'), 'nodeCost')
nx.set_node_attributes(graph, create_node_attribs('Name', 'Mean'), 'avgDemand')
nx.set_node_attributes(graph, create_node_attribs('Name', 'SD'), 'sdDemand')
nx.set_node_attributes(graph, create_node_attribs('Name', 'CST'), 'servTime')
nx.set_node_attributes(graph, create_node_attribs('Name', 'SL'), 'servLevel')
使用代码链接到Google Colab Notebook。
另外,see this answer,了解有关当前所用方法的时间比较的更多信息。
【讨论】:
以上是关于pandas读取csv文件时避免科学计数法(xxxe+09)的主要内容,如果未能解决你的问题,请参考以下文章
以科学记数法将带有科学记数法的文本文件读取到 pandas 数据框