(深度学习快速入门)自编码器及其变体(关键词:自编码器堆叠降噪变分AESAESDAEVAE)
Posted 快乐江湖
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了(深度学习快速入门)自编码器及其变体(关键词:自编码器堆叠降噪变分AESAESDAEVAE)相关的知识,希望对你有一定的参考价值。
文章目录
一:自编码器(AE)
自编码器(Auto-Encoders, AE):自编码器可以理解为一个试图还原原始输入的系统,主要由编码器(Encoder)和解码器(Decoder)组成,其主要目的是将输入 x x x转换成中间变量 y y y,然后再把 y y y转化为 x ︿ \\mathopx\\limits^︿ x︿,训练 x x x和 x ︿ \\mathopx\\limits^︿ x︿让它们无限接近
从直观上来看,自动编码器可以用于特征降维,类似主成分分析PCA,但是其相比PCA其性能更强,这是由于神经网络模型可以提取更有效的新特征。除了进行特征降维,自动编码器学习到的新特征可以送入有监督学习模型中,所以自动编码器可以起到特征提取器的作用
比如下图,将手写数字图片进行编码,编码后生成的
ϕ
1
\\phi_1
ϕ1~
ϕ
6
\\phi_6
ϕ6 较完整的保留了原始图像的典型特征,因此可较容易地通过解码恢复出原始图像
如下,利用Pytorch实现一个简单的自编码器
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# 定义网络模型
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28 * 28, 128),
nn.ReLU(True),
nn.Linear(128, 64),
nn.ReLU(True),
nn.Linear(64, 12),
nn.ReLU(True),
nn.Linear(12, 3), # encoding layer
)
self.decoder = nn.Sequential(
nn.Linear(3, 12),
nn.ReLU(True),
nn.Linear(12, 64),
nn.ReLU(True),
nn.Linear(64, 128),
nn.ReLU(True),
nn.Linear(128, 28 * 28),
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 加载数据集并预处理
from torchvision.datasets import MNIST
dataset = MNIST(root='data/', download=True)
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=100,
shuffle=True)
# 定义损失函数和优化器
model = Autoencoder().cuda()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(100):
for data in data_loader:
img, _ = data
img = img.view(img.size(0), -1).cuda()
# ===================forward=====================
output = model(img)
loss = criterion(output, img)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================log========================
print('epoch [/], loss::.4f'
.format(epoch + 1, 100, loss.data.item()))
# 保存模型
torch.save(model.state_dict(), 'autoencoder.pth')
二:自编码器变体
(1)堆叠自编码器(SAE)
堆叠自编码器(Stacked Autoencoder, SAE):将多个自编码器进行堆叠,每个自编码器的输出都作为下一个自编码器的输入,并且每个自编码器都可以训练从原始数据到低维表示的映射
如下,用Pytorch实现一个堆叠自编码器
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# 设置随机种子
torch.manual_seed(0)
# 加载 MNIST 数据集
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=64, shuffle=True)
# 定义自动编码器模型
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28 * 28, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU()
)
self.decoder = nn.Sequential(
nn.Linear(32, 64),
nn.ReLU(),
nn.Linear(64, 128),
nn.ReLU(),
nn.Linear(128, 28 * 28),
nn.Sigmoid()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 堆叠自动编码器
class StackedAutoencoder(nn.Module):
def __init__(self):
super(StackedAutoencoder, self).__init__()
self.autoencoder1 = Autoencoder()
self.autoencoder2 = Autoencoder()
self.autoencoder3 = Autoencoder()
def forward(self, x):
x = self.autoencoder1(x)
x = self.autoencoder2(x)
x = self.autoencoder3(x)
return x
# 创建堆叠自动编码器模型
model = StackedAutoencoder()
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
# 训练模型
num_epochs = 30
for epoch in range(num_epochs):
for data in train_loader:
img, _ = data
img = img.view(img.size(0), -1)
output = model(img)
loss = criterion(output, img)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 5 == 0:
print('Epoch [/], Loss: :.4f'.format(epoch+1, num_epochs, loss.item()))
# 在测试数据上评估模型
with torch.no_grad():
correct = 0
total = 0
for data in test_loader:
img, label = data
img = img.view(img.size(0), -1)
output = model(img)
total += label.size(0)
correct += (output.round() == img).sum().item()
print('Accuracy on test set: / (:.0f%)'.format(correct, total, 100. * correct / total))
(2)降噪自编码器(DAE)
降噪自编码(Denoising Auto-Encoders, DAE):首先对干净的输入信号加入噪声产生一个受损的信号。然后将受损信号送入传统的自动编码器中,使其重建回原来的无损信号
降噪编码器与传统自编码器的主要区别在于
- 降噪自编码器通过人为的增加噪声使模型获得鲁棒性的特征表达
- 避免使隐层单元学习一个传统自编码器中没有意义的恒等函数
降噪自编码器优缺点
- 优点:重建信号对输入中的噪声具有一定的鲁棒性
- 缺点:每次进行网络训练之前,都需要对干净输入信号人为地添加噪声,以获得它的损坏信号,这无形中就增加了该模型的处理时间
(3)堆叠降噪自编码器(SDAE)
堆叠降燥自编码器 (Stacked Denoising Auto-Encoders, SDAE):它是降噪自编码器的一个应用方法,采用了降噪编码器的编码器(encoder)作为基础单元,这个编码器是被预训练(pre-training)好的
如下图所示,编码器 f 1 f_1 f1, f 2 f_2 f2,…, f n f_n fn分别对应的是预训练号的降噪自编码器 D 1 D_1 D1、 D 2 D_2 D2、 D n D_n Dn的编码函数(编码器)
堆叠降噪自编码器训练过程如下
- 输入 x x x
- 加入噪声,和 f 1 f_1 f1对应的解码器 f 1 、 f_1^、 f1、采用降噪自编码器的方式进行训练
- 固定 f 1 f_1 f1,以相同方式训练 f 2 f_2 f2, f 3 f_3 f3,…, f n f_n fn,并在最后一层加入分类器
- 利用 x x x的真实标签和预测标签以监督方式进行训练,对网络参数进行微调
SDAE可以看作是监督学习和无监督学习的结合。在无监督学习中,通过编码-解码过程学习输入数据的表示,而不需要标记数据。并且,其降噪方面通过强制它从损坏的版本重建原始输入,进一步增强了它学习有意义的数据表示的能力。在监督学习中,它学习到的表示可以用作下游监督任务的特征,例如分类或回归。其最后一层通常替换为分类器或回归器,自动编码器的权重根据特定任务的标记数据进行微调。因此,SDAE 可以被视为无监督学习和有监督学习的混合体,其中无监督组件为数据提供有意义的表示,而有监督组件将这些表示用于特定任务
(4)变分自编码器(VAE)
变分自动编码器(Variational Auto-Encoders, VAE):是一种主要用于数据生成的自编码器的变体。首先利用数据训练变分自编码器,然后只使用变分自编码器的解码部分,自动生成与训练数据类似的输出。相当于在传统自编码器的隐层表达上增加一个对隐变量的约束(目的使编码器产生的隐层表达满足正态分布,能够更好的生成图像模型),是一种将概率模型和神经网络结构结合的方法
整个结构可以分成三个部分,分别是编码部分,解码部分和生成部分。编码部分和解码部分同时进行训练
VAE采用方差推断技术最大化ELBO公式
其中
- D K L D_KL DKL表示两个分布之间的KL散度
- p h p_h ph是潜在表征的先验分布
- q ( h ∣ x ; ϕ ) q(h|x;\\phi) q(h∣x;ϕ)是表示的变分后验,用来逼近真实后验
如下,使用Pytorch实现一个简单的VAE模型
VAE的架构由两部分组成:编码器和解码器。编码器获取输入数据 x 并通过两个全连接层 fc1 和 fc2 将其转换为潜在表示 z。 reparameterize 方法从均值 mu 和方差 log_var 的对数生成样本 z。然后解码器采用潜在表示 z 并通过两个完全连接的层 fc3 和 fc4 重建原始数据 x。
import torch
import torch.nn as nn
import torch.nn.functional as F
class VAE(nn.Module):
def __init__(self, input_size, hidden_size, latent_size):
super(VAE, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, latent_size * 2)
self.fc3 = nn.Linear(latent_size, hidden_size)
self.fc4 = nn.Linear(hidden_size, input_size)
def encode(self, x):
h = F.relu(self.fc1(x))
return self.fc2(h)
def reparameterize(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h = F.relu(self.fc3(z))
return torch1 TensorFlow介绍2 TensorFlow的安装 3 张量及其操作 4 tf.keras介绍 5 总结
1 TensorFlow介绍
深度学习框架TensorFlow一经发布,就受到了广泛的关注,并在计算机视觉、音频处理、推荐系统和自然语言处理等场景下都被大面积推广使用,接下来我们深入浅出的介绍Tensorflow的相关应用。
TensorFlow的依赖视图如下所示:
- TF托管在github平台,有google groups和contributors共同维护。
- TF提供了丰富的深度学习相关的API,支持Python和C/C++接口。
- TF提供了可视化分析工具Tensorboard,方便分析和调整模型。
- TF支持Linux平台,Windows平台,Mac平台,甚至手机移动设备等各种平台。
TensorFlow 2.0 将专注于简单性和易用性,工作流程如下所示:
1、使用tf.data加载数据。 使用tf.data实例化读取训练数据和测试数据
2、模型的建立与调试: 使用动态图模式 Eager Execution 和著名的神经网络高层 API 框架 Keras,结合可视化工具 TensorBoard,简易、快速地建立和调试模型;
3、模型的训练: 支持 CPU / 单 GPU / 单机多卡 GPU / 多机集群 / TPU 训练模型,充分利用海量数据和计算资源进行高效训练;
4、预训练模型调用: 通过 TensorFlow Hub,可以方便地调用预训练完毕的已有成熟模型。
5、模型的部署: 通过 TensorFlow Serving、TensorFlow Lite、TensorFlow.js 等组件,可以将TensorFlow 模型部署到服务器、移动端、嵌入式端等多种使用场景;
2 TensorFlow的安装
安装 TensorFlow在64 位系统上测试这些系统支持 TensorFlow:
- Ubuntu 16.04 或更高版本
- Windows 7 或更高版本
- macOS 10.12.6 (Sierra) 或更高版本(不支持 GPU)
进入虚拟环境当中再安装。推荐使用anoconda进行安装
- 1、非GPU版本安装
ubuntu安装:pip install tensorflow==2.3.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
- 2、GPU版本安装
pip install tensorflow-gpu==2.3.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
注:如果需要下载GPU版本的(TensorFlow只提供windows和linux版本的,没有Macos版本的)。
3 张量及其操作
张量Tensor是一个多维数组。 与NumPy ndarray对象类似,tf.Tensor对象也具有数据类型和形状。如下图所示:
此外,tf.Tensors可以保留在GPU中。 TensorFlow提供了丰富的操作库(tf.add,tf.matmul,tf.linalg.inv等),它们使用和生成tf.Tensor。在进行张量操作之前先导入相应的工具包:
import tensorflow as tf
import numpy as np
首先让我们创建基础的张量:
# 创建int32类型的0维张量,即标量
rank_0_tensor = tf.constant(4)
print(rank_0_tensor)
# 创建float32类型的1维张量
rank_1_tensor = tf.constant([2.0, 3.0, 4.0])
print(rank_1_tensor)
# 创建float16类型的二维张量
rank_2_tensor = tf.constant([[1, 2],
[3, 4],
[5, 6]], dtype=tf.float16)
print(rank_2_tensor)
输出结果为:
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor([2. 3. 4.], shape=(3,), dtype=float32)
tf.Tensor(
[[1. 2.]
[3. 4.]
[5. 6.]], shape=(3, 2), dtype=float16)
我们也可以创建更高维的张量:
# 创建float32类型的张量
rank_3_tensor = tf.constant([
[[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]],
[[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]],])
print(rank_3_tensor)
该输出结果我们有更多的方式将其展示出来:
我们可将张量转换为numpy中的ndarray的形式,转换方法有两种,以张量rank_2_tensor为例:
- np.array
np.array(rank_2_tensor)
- Tensor.numpy()
rank_2_tensor.numpy()
我们可以对张量做一些基本的数学运算,包括加法、元素乘法和矩阵乘法等:
# 定义张量a和b
a = tf.constant([[1, 2],
[3, 4]])
b = tf.constant([[1, 1],
[1, 1]])
print(tf.add(a, b), "\\n") # 计算张量的和
print(tf.multiply(a, b), "\\n") # 计算张量的元素乘法
print(tf.matmul(a, b), "\\n") # 计算乘法
输出结果为:
tf.Tensor(
[[2 3]
[4 5]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[1 2]
[3 4]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[3 3]
[7 7]], shape=(2, 2), dtype=int32)
另外张量也可用于各种聚合运算:
tf.reduce_sum() # 求和
tf.reduce_mean() # 平均值
tf.reduce_max() # 最大值
tf.reduce_min() # 最小值
tf.argmax() # 最大值的索引
tf.argmin() # 最小值的索引
例如:
c = tf.constant([[4.0, 5.0], [10.0, 1.0]])
# 最大值
print(tf.reduce_max(c))
# 最大值索引
print(tf.argmax(c))
# 计算均值
print(tf.reduce_mean(c))
输出为:
tf.Tensor(10.0, shape=(), dtype=float32)
tf.Tensor([1 0], shape=(2,), dtype=int64)
tf.Tensor(5.0, shape=(), dtype=float32)
变量是一种特殊的张量,形状是不可变,但可以更改其中的参数。定义时的方法是:
my_variable = tf.Variable([[1.0, 2.0], [3.0, 4.0]])
我们也可以获取它的形状,类型及转换为ndarray:
print("Shape: ",my_variable.shape)
print("DType: ",my_variable.dtype)
print("As NumPy: ", my_variable.numpy)
输出为:
Shape: (2, 2)
DType: <dtype: 'float32'>
As NumPy: <bound method BaseResourceVariable.numpy of <tf.Variable 'Variable:0' shape=(2, 2) dtype=float32, numpy=
array([[1., 2.],
[3., 4.]], dtype=float32)>>
4 tf.keras介绍
tf.keras是TensorFlow 2.0的高阶API接口,为TensorFlow的代码提供了新的风格和设计模式,大大提升了TF代码的简洁性和复用性,官方也推荐使用tf.keras来进行模型设计和开发。
tf.keras中常用模块如下表所示:
深度学习实现的主要流程:1.数据获取,2,数据处理,3.模型创建与训练,4 模型测试与评估,5.模型预测
- 导入tf.keras:使用
tf.keras
,首先需要在代码开始时导入tf.keras
import tensorflow as tf
from tensorflow import keras
- 数据输入:对于小的数据集,可以直接使用numpy格式的数据进行训练、评估模型,对于大型数据集或者要进行跨设备训练时使用tf.data.datasets来进行数据输入。
- 模型构建:简单模型使用Sequential进行构建;复杂模型使用函数式编程来构建;自定义layers
- 训练与评估:
- 配置训练过程:
# 配置优化方法,损失函数和评价指标
model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
- 模型训练
# 指明训练数据集,训练epoch,批次大小和验证集数据
model.fit/fit_generator(dataset, epochs=10,
batch_size=3,
validation_data=val_dataset,
)
- 模型评估
# 指明评估数据集和批次大小
model.evaluate(x, y, batch_size=32)
- 模型预测
# 对新的样本进行预测
model.predict(x, batch_size=32)
- 回调函数(callbacks)
回调函数用在模型训练过程中,来控制模型训练行为,可以自定义回调函数,也可使用tf.keras.callbacks 内置的 callback :
ModelCheckpoint:定期保存 checkpoints。 LearningRateScheduler:动态改变学习速率。 EarlyStopping:当验证集上的性能不再提高时,终止训练。 TensorBoard:使用 TensorBoard 监测模型的状态。
- 模型的保存和恢复
- 只保存参数
# 只保存模型的权重
model.save_weights('./my_model')
# 加载模型的权重
model.load_weights('my_model')
- 保存整个模型
# 保存模型架构与权重在h5文件中
model.save('my_model.h5')
# 加载模型:包括架构和对应的权重
model = keras.models.load_model('my_model.h5')
5 总结
-
了解Tensorflow2.0框架的用途及流程
1.使用tf.data加载数据
2、模型的建立与调试
3、模型的训练
4、预训练模型调用
5、模型的部署
-
知道tf2.0的张量及其操作
张量是多维数组。
1、创建方法:tf.constant()
2、转换为numpy: np.array()或tensor.asnumpy()
3、常用函数:加法,乘法,及各种聚合运算
4、变量:tf.Variable()
-
知道tf.keras中的相关模块及常用方法
常用模块:models,losses,application等
常用方法:
1、导入tf.keras
2、数据输入
3、模型构建
4、训练与评估
5、回调函数
6、模型的保存与恢复
以上是关于(深度学习快速入门)自编码器及其变体(关键词:自编码器堆叠降噪变分AESAESDAEVAE)的主要内容,如果未能解决你的问题,请参考以下文章
DSSM:深度语义匹配模型(及其变体CLSMLSTM-DSSM)
《自然语言处理实战入门》深度学习基础 ---- attention 注意力机制 ,Transformer 深度解析与学习材料汇总
《自然语言处理实战入门》深度学习基础 ---- attention 注意力机制 ,Transformer 深度解析与学习材料汇总