Android安全加密:对称加密

Posted Jack-Chan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Android安全加密:对称加密相关的知识,希望对你有一定的参考价值。

android安全加密专题文章索引

  1. Android安全加密:对称加密
  2. Android安全加密:非对称加密
  3. Android安全加密:消息摘要Message Digest
  4. Android安全加密:数字签名和数字证书
  5. Android安全加密:Https编程

一、凯撒密码

1. 概述

凯撒密码作为一种最为古老的对称加密体制,在古罗马的时候都已经很流行,他的基本思想是:通过把字母移动一定的位数来实现加密和解密。明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文。例如,当偏移量是3 的时候,所有的字母A 将被替换成D,B 变成E,由此可见,位数就是凯撒密码加密和解密的密钥。

例如:字符串”ABC”的每个字符都右移3 位则变成”DEF”,解密的时候”DEF”的每个字符左移3 位即能还原,如下图所示:

2. 准备知识

 //字符转换成ASCII 码数值
 char charA = 'a';
 int intA = charA; //char 强转为int 即得到对应的ASCII 码值,’a’的值为97

//ASCII 码值转成char
int intA = 97;//97 对应的ASCII 码’a’
char charA = (char) intA; //int 值强转为char 即得到对应的ASCII 字符,即'a'

3. 凯撒密码的简单代码实现

    /**
     * 加密
     * @param input 数据源(需要加密的数据)
     * @param key 秘钥,即偏移量
     * @return 返回加密后的数据
     */
    public static String encrypt(String input, int key) 
        //得到字符串里的每一个字符
        char[] array = input.toCharArray();

        for (int i = 0; i < array.length; ++i) 
            //字符转换成ASCII 码值
            int ascii = array[i];
            //字符偏移,例如a->b
            ascii = ascii + key;
            //ASCII 码值转换为char
            char newChar = (char) ascii;
            //替换原有字符
            array[i] = newChar;

            //以上4 行代码可以简写为一行
            //array[i] = (char) (array[i] + key);
        

        //字符数组转换成String
        return new String(array);
    

    /**
     * 解密
     * @param input 数据源(被加密后的数据)
     * @param key 秘钥,即偏移量
     * @return 返回解密后的数据
     */
    public static String decrypt(String input, int key) 
        //得到字符串里的每一个字符
        char[] array = input.toCharArray();
        for (int i = 0; i < array.length; ++i) 
            //字符转换成ASCII 码值
            int ascii = array[i];
            //恢复字符偏移,例如b->a
            ascii = ascii - key;
            //ASCII 码值转换为char
            char newChar = (char) ascii;
            //替换原有字符
            array[i] = newChar;

            //以上4 行代码可以简写为一行
            //array[i] = (char) (array[i] - key);
        

        //字符数组转换成String
        return new String(array);
    

代码输出结果:

4. 破解凯撒密码:频率分析法

凯撒密码加密强度太低,只需要用频度分析法即可破解。
在任何一种书面语言中,不同的字母或字母组合出现的频率各不相同。而且,对于以这种语言书写的任意一段文本,都具有大致相同的特征字母分布。比如,在英语中,字母E 出现的频率很高,而X 则出现得较少。

英语文本中典型的字母分布情况如下图所示:

5. 破解流程

  • 统计密文里出现次数最多的字符,例如出现次数最多的字符是是’h’。
  • 计算字符’h’到’e’的偏移量,值为3,则表示原文偏移了3 个位置。
  • 将密文所有字符恢复偏移3 个位置。

注意点:统计密文里出现次数最多的字符时,需多统计几个备选,因为最多的可能是空格或者其他字符,例如下图出现次数最多的字符’#’是空格加密后的字符,’h’才是’e’偏移后的值。

解密时要多几次尝试,因为不一定出现次数最多的字符就是我们想要的目标字符,如下图,第二次解密的结果才是正确的。

/**
 * 频率分析法破解凯撒密码
 */
public class FrequencyAnalysis 
    //英文里出现次数最多的字符
    private static final char MAGIC_CHAR = 'e';
    //破解生成的最大文件数
    private static final int DE_MAX_FILE = 4;

    public static void main(String[] args) throws Exception 
        //测试1,统计字符个数
        //printCharCount("article1_en.txt");

        //加密文件
        //int key = 3;
        //encryptFile("article1.txt", "article1_en.txt", key);

        //读取加密后的文件
        String artile = file2String("article1_en.txt");
        //解密(会生成多个备选文件)
        decryptCaesarCode(artile, "article1_de.txt");
    

    public static void printCharCount(String path) throws IOException
        String data = file2String(path);
        List<Entry<Character, Integer>> mapList = getMaxCountChar(data);
        for (Entry<Character, Integer> entry : mapList) 
            //输出前几位的统计信息
            System.out.println("字符'" + entry.getKey() + "'出现" + entry.getValue() + "次");
        
    

    public static void encryptFile(String srcFile, String destFile, int key) throws IOException 
        String artile = file2String(srcFile);
        //加密文件
        String encryptData = MyEncrypt.encrypt(artile, key);
        //保存加密后的文件
        string2File(encryptData, destFile);
    

    /**
     * 破解凯撒密码
     * @param input 数据源
     * @return 返回解密后的数据
     */
    public static void decryptCaesarCode(String input, String destPath) 
        int deCount = 0;//当前解密生成的备选文件数
        //获取出现频率最高的字符信息(出现次数越多越靠前)
        List<Entry<Character, Integer>> mapList = getMaxCountChar(input);
        for (Entry<Character, Integer> entry : mapList) 
            //限制解密文件备选数
            if (deCount >= DE_MAX_FILE) 
                break;
            

            //输出前几位的统计信息
            System.out.println("字符'" + entry.getKey() + "'出现" + entry.getValue() + "次");

            ++deCount;
            //出现次数最高的字符跟MAGIC_CHAR的偏移量即为秘钥
            int key = entry.getKey() - MAGIC_CHAR;
            System.out.println("猜测key = " + key + ", 解密生成第" + deCount + "个备选文件" + "\\n");
            String decrypt = MyEncrypt.decrypt(input, key);

            String fileName = "de_" + deCount + destPath;
            string2File(decrypt, fileName);
        
    

    //统计String里出现最多的字符
    public static List<Entry<Character, Integer>> getMaxCountChar(String data) 
        Map<Character, Integer> map = new HashMap<Character, Integer>();
        char[] array = data.toCharArray();
        for (char c : array) 
            if(!map.containsKey(c)) 
                map.put(c, 1);
            else
                Integer count = map.get(c);
                map.put(c, count + 1);
            
        

        //输出统计信息
        /*for (Entry<Character, Integer> entry : map.entrySet()) 
            System.out.println(entry.getKey() + "出现" + entry.getValue() +  "次");
        */

        //获取获取最大值
        int maxCount = 0;
        for (Entry<Character, Integer> entry : map.entrySet()) 
            //不统计空格
            if (/*entry.getKey() != ' ' && */entry.getValue() > maxCount)  
                maxCount = entry.getValue();
            
        

        //map转换成list便于排序
        List<Entry<Character, Integer>> mapList = new ArrayList<Map.Entry<Character,Integer>>(map.entrySet());
        //根据字符出现次数排序
        Collections.sort(mapList, new Comparator<Entry<Character, Integer>>()
            @Override
            public int compare(Entry<Character, Integer> o1,
                    Entry<Character, Integer> o2) 
                return o2.getValue().compareTo(o1.getValue());
            
        );
        return mapList;
    

    public static String file2String(String path) throws IOException 
        FileReader reader = new FileReader(new File(path));
        char[] buffer = new char[1024];
        int len = -1;
        StringBuffer sb = new StringBuffer();
        while ((len = reader.read(buffer)) != -1) 
            sb.append(buffer, 0, len);
        
        return sb.toString();
    

    public static void string2File(String data, String path)
        FileWriter writer = null;
        try 
            writer = new FileWriter(new File(path));
            writer.write(data);
         catch (Exception e) 
            e.printStackTrace();
        finally 
            if (writer != null) 
                try 
                    writer.close();
                 catch (IOException e) 
                    e.printStackTrace();
                
            
        

    

二、对称加密

1、概述

加密和解密都使用同一把秘钥,这种加密方法称为对称加密,也称为单密钥加密。
简单理解为:加密解密都是同一把钥匙。
凯撒密码就属于对称加密,他的字符偏移量即为秘钥。

2、对称加密常用算法

AES、DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK 等。

DES
全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,1976 年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。

3DES
也叫Triple DES,是三重数据加密算法(TDEA,Triple Data Encryption Algorithm)块密码的通称。
它相当于是对每个数据块应用三次DES 加密算法。由于计算机运算能力的增强,原版DES 密码的密钥长度变得容易被暴力破解;3DES 即是设计用来提供一种相对简单的方法,即通过增加DES 的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。

AES
高级加密标准(英语:Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael 加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001 年11 月26 日发布于FIPS PUB 197,并在2002 年5 月26 日成为有效的标准。2006 年,高级加密标准已然成为对称密钥加密中最流行的算法之一。

3、DES 算法简介

DES 加密原理(对比特位进行操作,交换位置,异或等等,无需详细了解)

准备知识

Bit 是计算机最小的传输单位。以0 或1 来表示比特位的值
例如数字3 对应的二进制数据为:00000011

代码示例

 int i = 97;
 String bit = Integer.toBinaryString(i);
 //输出:97 对应的二进制数据为: 1100001
 System.out.println(i + "对应的二进制数据为: " + bit);

Byte 与Bit 区别

数据存储是以“字节”(Byte)为单位,数据传输是大多是以“位”(bit,又名“比特”)为单位,一个位就代表一个0 或1(即二进制),每8 个位(bit,简写为b)组成一个字节(Byte,简写为B),是最小一级的信息单位。

Byte 的取值范围:

//byte 的取值范围:-128 到127
System.out.println(Byte.MIN_VALUE + "到" + Byte.MAX_VALUE);

即10000000 到01111111 之间,一个字节占8 个比特位

二进制转十进制图示:

任何字符串都可以转换为字节数组

String data = "1234abcd";
byte[] bytes = data.getBytes();//内容为:49 50 51 52 97 98 99 100

上面数据49 50 51 52 97 98 99 100 对应的二进制数据(即比特位为):
00110001
00110010
00110011
00110100
01100001
01100010
01100011
01100100

将他们间距调大一点,可看做一个矩阵:

之后可对他们进行各种操作,例如交换位置、分割、异或运算等,常见的加密方式就是这样操作比特位的,例如下图的IP 置换以及S-Box 操作都是常见加密的一些方式:

IP 置换:

S-BOX 置换:

DES 加密过程图解(流程很复杂,只需要知道内部是操作比特位即可):

对称加密应用场景

  • 本地数据加密(例如加密android 里SharedPreferences 里面的某些敏感数据)
  • 网络传输:登录接口post 请求参数加密username=lisi,pwd=oJYa4i9VASRoxVLh75wPCg==
  • 加密用户登录结果信息并序列化到本地磁盘(将user 对象序列化到本地磁盘,下次登录时反序列化到内存里)
  • 网页交互数据加密(即后面学到的Https)

DES 算法代码实现

 //1,得到cipher 对象(可翻译为密码器或密码系统)
 Cipher cipher = Cipher.getInstance("DES");
 //2,创建秘钥
 SecretKey key = KeyGenerator.getInstance("DES").generateKey();
 //3,设置操作模式(加密/解密)
 cipher.init(Cipher.ENCRYPT_MODE, key);
 //4,执行操作
 byte[] result = cipher.doFinal("黑马".getBytes());

AES 算法代码实现

用法同上,只需把”DES”参数换成”AES”即可。

使用Base64 编码加密后的结果

byte[] result = cipher.doFinal("黑马".getBytes());
System.out.println(new String(result));

输出结果:

加密后的结果是字节数组,这些被加密后的字节在码表(例如UTF-8 码表)上找不到对应字符,会出现乱码,当乱码字符串再次转换为字节数组时,长度会变化,导致解密失败,所以转换后的数据是不安全的。

使用Base64 对字节数组进行编码,任何字节都能映射成对应的Base64 字符,之后能恢复到字节数组,利于加密后数据的保存于传输,所以转换是安全的。同样,字节数组转换成16 进制字符串也是安全的。

密文转换成Base64 编码后的输出结果:

密文转换成16 进制编码后的输出结果:

Java 里没有直接提供Base64 以及字节数组转16 进制的Api,开发中一般是自己手写或直接使用第三方提供的成熟稳定的工具类(例如apache 的commons-codec)。

Base64 字符映射表

对称加密的具体应用方式

1、生成秘钥并保存到硬盘上,以后读取该秘钥进行加密解密操作,实际开发中用得比较少

//生成随机秘钥
SecretKey secretKey = KeyGenerator.getInstance("AES").generateKey();
//序列化秘钥到磁盘上
FileOutputStream fos = new FileOutputStream(new File("heima.key"));

ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(secretKey);

//从磁盘里读取秘钥
FileInputStream fis = new FileInputStream(new File("heima.key"));
ObjectInputStream ois = new ObjectInputStream(fis);
Key key = (Key) ois.readObject();

2、使用自定义秘钥(秘钥写在代码里)

//创建密钥写法1
KeySpec keySpec = new DESKeySpec(key.getBytes());
SecretKey secretKey = SecretKeyFactory.getInstance(ALGORITHM).
generateSecret(keySpec);

//创建密钥写法2
//SecretKey secretKey = new SecretKeySpec(key.getBytes(), KEY_ALGORITHM);

Cipher cipher = Cipher.getInstance(CIPHER_ALGORITHM);
cipher.init(Cipher.DECRYPT_MODE, secretKey);
//得到key 后,后续代码就是Cipher 的写法,此处省略...

注意事项

把秘钥写在代码里有一定风险,当别人反编译代码的时候,可能会看到秘钥,android 开发里建议用JNI 把秘钥值写到C 代码里,甚至拆分成几份,最后再组合成真正的秘钥

算法/工作模式/填充模式

初始化cipher 对象时,参数可以直接传算法名:例如:

Cipher c = Cipher.getInstance("DES");

也可以指定更详细的参数,格式:”algorithm/mode/padding” ,即”算法/工作模式/填充模式”

Cipher c = Cipher.getInstance("DES/CBC/PKCS5Padding");

密码块工作模式

块密码工作模式(Block cipher mode of operation),是对于按块处理密码的加密方式的一种扩充,不仅仅适用于AES,包括DES, RSA 等加密方法同样适用。

填充模式

填充(Padding),是对需要按块处理的数据,当数据长度不符合块处理需求时,按照一定方法填充满块长的一种规则。

具体代码:

//秘钥算法
private static final String KEY_ALGORITHM = "DES";
//加密算法:algorithm/mode/padding 算法/工作模式/填充模式
private static final String CIPHER_ALGORITHM = "DES/ECB/PKCS5Padding";
//秘钥
private static final String KEY = "12345678";//DES 秘钥长度必须是8 位或以上
//private static final String KEY = "1234567890123456";//AES 秘钥长度必须是16 位

//初始化秘钥
SecretKey secretKey = new SecretKeySpec(KEY.getBytes(), KEY_ALGORITHM);
Cipher cipher = Cipher.getInstance(CIPHER_ALGORITHM);

//加密
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
byte[] result = cipher.doFinal(input.getBytes());

注意:AES、DES 在CBC 操作模式下需要iv 参数

//AES、DES 在CBC 操作模式下需要iv 参数
IvParameterSpec iv = new IvParameterSpec(key.getBytes());

//加密
cipher.init(Cipher.ENCRYPT_MODE, secretKey, iv);

三、总结

DES 安全度在现代已经不够高,后来又出现的3DES 算法强度提高了很多,但是其执行效率低下,AES算法加密强度大,执行效率高,使用简单,实际开发中建议选择AES 算法。实际android 开发中可以用对称加密(例如选择AES 算法)来解决很多问题,例如:

  • 做一个管理密码的app,我们在不同的网站里使用不同账号密码,很难记住,想做个app 统一管理,但是账号密码保存在手机里,一旦丢失了容易造成安全隐患,所以需要一种加密算法,将账号密码信息加密起来保管,这时候如果使用对称加密算法,将数据进行加密,秘钥我们自己记在心里,只需要记住一个密码。需要的时候可以还原信息。
  • android 里需要把一些敏感数据保存到SharedPrefrence 里的时候,也可以使用对称加密,这样可以在需要的时候还原。
  • 请求网络接口的时候,我们需要上传一些敏感数据,同样也可以使用对称加密,服务端使用同样的算法就可以解密。或者服务端需要给客户端传递数据,同样也可以先加密,然后客户端使用同样算法解密。

以上是关于Android安全加密:对称加密的主要内容,如果未能解决你的问题,请参考以下文章

Android安全加密:数字签名和数字证书

aes算法填充方式

Android安全加密:数字签名和数字证书

Android 安全加密

[译] 最佳安全实践:在 Java 和 Android 中使用 AES 进行对称加密

Android 中 非对称(RSA)加密和对称(AES)加密