AVL平衡二叉树
Posted 任我驰骋.
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AVL平衡二叉树相关的知识,希望对你有一定的参考价值。
AVL树
AVL树
AVL树的概念
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是AVL树
左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 ,搜索时间复杂度O(log2n)。
AVL树节点的定义
template<class T>
struct AVLTreeNode
AVLTreeNode(const T& data)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _bf(0)
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
T _data;
int _bf; // 该节点的平衡因子
;
AVL树的插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:
- 按照二叉搜索树的方式插入新节点
- 调整节点的平衡因子
bool Insert(const T& data)
// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
// ...
// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
/*
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此
时满足
AVL树的性质,插入成功
2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负
1,此
时以pParent为根的树的高度增加,需要继续向上更新
3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转
处理
*/
while (pParent)
// 更新双亲的平衡因子
if (pCur == pParent->_pLeft)
pParent->_bf--;
else
pParent->_bf++;
// 更新后检测双亲的平衡因子
if (0 == pParent->_bf)
break;
else if (1 == pParent->_bf || -1 == pParent->_bf)
// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的
二叉树
// 的高度增加了一层,因此需要继续向上调整
pCur = pParent;
pParent = pCur->_pParent;
else
// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
// 为根的树进行旋转处理
if(2 == pParent->_bf)
// ...
else
// ...
return true;
AVL树的旋转
如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:
- 新节点插入较高左子树的左侧—左左:右单旋
/*
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增
加
了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加
一层,
即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子
树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子
即可。在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在
2. 60可能是根节点,也可能是子树
如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树
同学们再此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
*/
void _RotateR(PNode pParent)
// pSubL: pParent的左孩子
// pSubLR: pParent左孩子的右孩子,注意:该
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转完成之后,30的右孩子作为双亲的左孩子
pParent->_pLeft = pSubLR;
// 如果30的左孩子的右孩子存在,更新亲双亲
if(pSubLR)
pSubLR->_pParent = pParent;
// 60 作为 30的右孩子
pSubL->_pRight = pParent;
// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
PNode pPParent = pParent->_pParent;
// 更新60的双亲
pParent->_pParent = pSubL;
// 更新30的双亲
pSubL->_pParent = pPParent;
// 如果60是根节点,根新指向根节点的指针
if(NULL == pPParent)
_pRoot = pSubL;
pSubL->_pParent = NULL;
else
// 如果60是子树,可能是其双亲的左子树,也可能是右子树
if(pPParent->_pLeft == pParent)
pPParent->_pLeft = pSubL;
else
pPParent->_pRight = pSubL;
// 根据调整后的结构更新部分节点的平衡因子
pParent->_bf = pSubL->_bf = 0;
- 新节点插入较高右子树的右侧—右右:左单旋
void RotateLeft(Node* parent)
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
// 注意:类似右单支的情况,即subRL可能会为空
if (subRL)
subRL->_parent = parent;
subR->_left = parent;
// 更新parent和subR的双亲
Node* pparent = parent->_parent;
parent->_parent = subR;
subR->_parent = pparent;
// 处理pparent
if (nullptr == pparent)
// 说明旋转之前,parent是根节点,旋转完成之后,subR就是新的根
_root = subR;
else
// 说明旋转之前,parent是子树,parent可能是pparent的左子树或者右子树
if (parent == pparent->_left)
pparent->_left = subR;
else
pparent->_right = subR;
// 更新parent和subR的平衡因子
parent->_bf = subR->_bf = 0;
- 新节点插入较高左子树的右侧—左右:先左单旋再右单旋
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平
衡因子
int bf = pSubLR->_bf;
// 先对30进行左单旋
_RotateL(pParent->_pLeft);
// 再对90进行右单旋
_RotateR(pParent);
if(1 == bf)
pSubL->_bf = -1;
else if(-1 == bf)
pParent->_bf = 1;
- 新节点插入较高右子树的左侧—右左:先右单旋再左单旋
void RoateRL(Node* parent)
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateRight(parent->_right);
RotateLeft(parent);
if (1 == bf)
parent->_bf = -1;
else if (-1 == bf)
subR->_bf = 1;
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑
- pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
当pSubR的平衡因子为1时,执行左单旋
当pSubR的平衡因子为-1时,执行右左双旋 - pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
当pSubL的平衡因子为-1是,执行右单旋
当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。
AVL树的验证
AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
- 验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树 - 验证其为平衡树
每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
// 空树也是AVL树
if (nullptr == pRoot) return true;
// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
int leftHeight = _Height(pRoot->_pLeft);
int rightHeight = _Height(pRoot->_pRight);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
// pRoot平衡因子的绝对值超过1,则一定不是AVL树
if (diff != pRoot->_bf || (diff > 1 || diff < -1))
return false;
// pRoot的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot->_pRight);
AVL树的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2(N) 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
开发者涨薪指南 48位大咖的思考法则、工作方式、逻辑体系以上是关于AVL平衡二叉树的主要内容,如果未能解决你的问题,请参考以下文章