python:PIL图像处理

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python:PIL图像处理相关的知识,希望对你有一定的参考价值。

参考技术A PIL (Python Imaging Library)

Python图像处理库,该库支持多种文件格式,提供强大的图像处理功能。

PIL中最重要的类是Image类,该类在Image模块中定义。

从文件加载图像:

如果成功,这个函数返回一个Image对象。现在你可以使用该对象的属性来探索文件的内容。

format 属性指定了图像文件的格式,如果图像不是从文件中加载的则为 None 。
size 属性是一个2个元素的元组,包含图像宽度和高度(像素)。
mode 属性定义了像素格式,常用的像素格式为:“L” (luminance) - 灰度图, “RGB” , “CMYK”。

如果文件打开失败, 将抛出IOError异常。

一旦你拥有一个Image类的实例,你就可以用该类定义的方法操作图像。比如:显示

( show() 的标准实现不是很有效率,因为它将图像保存到一个临时文件,然后调用外部工具(比如系统的默认图片查看软件)显示图像。该函数将是一个非常方便的调试和测试工具。)

接下来的部分展示了该库提供的不同功能。

PIL支持多种图像格式。从磁盘中读取文件,只需使用 Image 模块中的 open 函数。不需要提供文件的图像格式。PIL库将根据文件内容自动检测。

如果要保存到文件,使用 Image 模块中的 save 函数。当保存文件时,文件名很重要,除非指定格式,否则PIL库将根据文件的扩展名来决定使用哪种格式保存。

** 转换文件到JPEG **

save 函数的第二个参数可以指定使用的文件格式。如果文件名中使用了一个非标准的扩展名,则必须通过第二个参数来指定文件格式。

** 创建JPEG缩略图 **

需要注意的是,PIL只有在需要的时候才加载像素数据。当你打开一个文件时,PIL只是读取文件头获得文件格式、图像模式、图像大小等属性,而像素数据只有在需要的时候才会加载。

这意味着打开一个图像文件是一个非常快的操作,不会受文件大小和压缩算法类型的影响。

** 获得图像信息 **

Image 类提供了某些方法,可以操作图像的子区域。提取图像的某个子区域,使用 crop() 函数。

** 复制图像的子区域 **

定义区域使用一个包含4个元素的元组,(left, upper, right, lower)。坐标原点位于左上角。上面的例子提取的子区域包含300x300个像素。

该区域可以做接下来的处理然后再粘贴回去。

** 处理子区域然后粘贴回去 **

当往回粘贴时,区域的大小必须和参数匹配。另外区域不能超出图像的边界。然而原图像和区域的颜色模式无需匹配。区域会自动转换。

** 滚动图像 **

paste() 函数有个可选参数,接受一个掩码图像。掩码中255表示指定位置为不透明,0表示粘贴的图像完全透明,中间的值表示不同级别的透明度。

PIL允许分别操作多通道图像的每个通道,比如RGB图像。 split() 函数创建一个图像集合,每个图像包含一个通道。 merge() 函数接受一个颜色模式和一个图像元组,然后将它们合并为一个新的图像。接下来的例子交换了一个RGB图像的三个通道。

** 分离和合并图像通道 **

对于单通道图像, split() 函数返回图像本身。如果想处理各个颜色通道,你可能需要先将图像转为RGB模式。

resize() 函数接受一个元组,指定图像的新大小。
rotate() 函数接受一个角度值,逆时针旋转。

** 基本几何变换 **

图像旋转90度也可以使用 transpose() 函数。 transpose() 函数也可以水平或垂直翻转图像。

** transpose **

transpose() 和 rotate() 函数在性能和结果上没有区别。

更通用的图像变换函数为 transform() 。

PIL可以转换图像的像素模式。

** 转换颜色模式 **

PIL库支持从其他模式转为“L”或“RGB”模式,其他模式之间转换,则需要使用一个中间图像,通常是“RGB”图像。

ImageFilter 模块包含多个预定义的图像增强过滤器用于 filter() 函数。

** 应用过滤器 **

point() 函数用于操作图像的像素值。该函数通常需要传入一个函数对象,用于操作图像的每个像素:

** 应用点操作 **

使用以上技术可以快速地对图像像素应用任何简单的表达式。可以结合 point() 函数和 paste 函数修改图像。

** 处理图像的各个通道 **

注意用于创建掩码图像的语法:

Python计算逻辑表达式采用短路方式,即:如果and运算符左侧为false,就不再计算and右侧的表达式,而且返回结果是表达式的结果。比如 a and b 如果a为false则返回a,如果a为true则返回b,详见Python语法。

对于更多高级的图像增强功能,可以使用 ImageEnhance 模块中的类。

可以调整图像对比度、亮度、色彩平衡、锐度等。

** 增强图像 **

PIL库包含对图像序列(动画格式)的基本支持。支持的序列格式包括 FLI/FLC 、 GIF 和一些实验性的格式。 TIFF 文件也可以包含多个帧。

当打开一个序列文件时,PIL库自动加载第一帧。你可以使用 seek() 函数 tell() 函数在不同帧之间移动。

** 读取序列 **

如例子中展示的,当序列到达结尾时,将抛出EOFError异常。

注意当前版本的库中多数底层驱动只允许seek到下一帧。如果想回到前面的帧,只能重新打开图像。

以下迭代器类允许在for语句中循环遍历序列:

** 一个序列迭代器类 **

PIL库包含一些函数用于将图像、文本打印到Postscript打印机。以下是一个简单的例子。

** 打印到Postscript **

如前所述,可以使用 open() 函数打开图像文件,通常传入一个文件名作为参数:

如果打开成功,返回一个Image对象,否则抛出IOError异常。

也可以使用一个file-like object代替文件名(暂可以理解为文件句柄)。该对象必须实现read,seek,tell函数,必须以二进制模式打开。

** 从文件句柄打开图像 **

如果从字符串数据中读取图像,使用StringIO类:

** 从字符串中读取 **

如果图像文件内嵌在一个大文件里,比如 tar 文件中。可以使用ContainerIO或TarIO模块来访问。

** 从tar文档中读取 **

** 该小节不太理解,请参考原文 **

有些解码器允许当读取文件时操作图像。通常用于在创建缩略图时加速解码(当速度比质量重要时)和输出一个灰度图到激光打印机时。

draft() 函数。

** Reading in draft mode **

输出类似以下内容:

注意结果图像可能不会和请求的模式和大小匹配。如果要确保图像不大于指定的大小,请使用 thumbnail 函数。

Python2.7 教程 PIL
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/00140767171357714f87a053a824ffd811d98a83b58ec13000

Python 之 使用 PIL 库做图像处理
http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html

来自 http://effbot.org/imagingbook/introduction.htm

好玩Python——PIL项目实训

PIL学习总结:

1.

             

           

2,PIL库概述:

pil库可以完成图像归档和图像处理两方面功能的需求:

  1. 图像归档:对图像进行批处理,生成图像预览,图像转换格式等;
  2. 图像处理:图像基本处理,像素处理,颜色处理等;

3,PIL库Image类解析: 

  1. 方法

    描述

    Image.open(filename)

    根据参数加载图像文件

    Image.new(mode, size, color)

    根据给定参数创建一个新的图像

    Image.open(StringIO.StringIO(buffer))

    从字符串中获取图像

    Image.frombytes(mode, size, data)

    根据像素点data创建图像

    Image.verify()

    对图像文件完整性进行检查,返回异常

  2. Image类的图像转换和保存方法如下图所示:

    方法

    描述

    Image.save(filename, format)

    将图像保存为filename文件名,format是图片格式

    Image.convert(mode)

    使用不同的参数,转换图像为新的模式

    Image.thumbnail(size)

    创建图像的缩略图,size是缩略图尺寸的二元元组

  3. Image颜色merge()方法:

    方法

    描述

    Image.point(func)

    根据函数func功能对每个元素进行运算,返回图像副本

    Image.split()

    提取RGB图像的每个颜色通道,返回图像副本

    Image.merge(mode,bands)

    合并通道 ,采用mode色彩,bands是新色的色彩通道

    Image.blend(im1,im2,alpha)

    将两幅图片im1和im2按照如下公式插值后生成新的图像:

    im1 * (1.0-alpha) + im2 * alpha

  4. 图像的过滤和增强:

    方法表示

    描述

    ImageFilter.BLUR

    图像的模糊效果

    ImageFilter.CONTOUR

    图像的轮廓效果

    ImageFilter.DETAIL

    图像的细节效果

    ImageFilter.EDGE_ENHANCE

    图像的边界加强效果

    ImageFilter.EDGE_ENHANCE_MORE

    图像的阈值边界加强效果

    ImageFilter.EMBOSS

    图像的浮雕效果

    ImageFilter.FIND_EDGES

    图像的边界效果

    ImageFilter.SMOOTH

    图像的平滑效果

    ImageFilter.SMOOTH_MORE

    图像的阈值平滑效果

    ImageFilter.SHARPEN

    图像的锐化效果

 

 

 

 

以上是关于python:PIL图像处理的主要内容,如果未能解决你的问题,请参考以下文章

Python之PIL库

好玩Python——PIL项目实训

python pil 怎么安装

python图像处理图像水印和PIL模式转化

快乐python 零基础也能P图 —— PIL库

PIL做图像处理