Pillow库进行图像文件处理(配图详解)
Posted 爱吃饼干的小白鼠
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pillow库进行图像文件处理(配图详解)相关的知识,希望对你有一定的参考价值。
大家好,今天我们来学习Pillow的相关知识,本文详解的讲解了使用Pillow库进行图片的简单处理,使用PyCharm开发Python的详细过程和各种第三方库的安装与使用。运用pillow来对图片进行处理,我们先介绍如何安装Pillow库和图象处理基本知识的介绍。本文会介绍如何透明度混合以及遮盖混合。
Pillow 是 Python Imaging Library的简称,是 Python 语言中最为常用的图像处理库。Pillow 库提供了对 Python3 的支持,为Python3 解释器提供了图像处理的功能。通过使用 Pillow 库, 可以方便地使用 Python 程序对图片进行处理,例如常见的尺寸、格式、色彩、旋转等处理。
目录
一、Pillow 库的安装
Pillow 库是Python开发者最为常见的图像处理库,它提供了广泛的文件格式支持、强大的图像处理能力,主要包括图像存储、图像显示、格式转换以及基本的图像处理操作等。 安装 Pillow 库的方法与安装 Python 其他第三方库的方法相同,也可以到 Python 官方网站下 载 Pillow 库的压缩包。
1.1 pip 安装 pillow
pip 安装 pillow,执行如下命令:
pip install pillow
二、图象处理基本知识
我们在学习pillow之前,我们首先需要了解图像的基本知识,比如说什么是图像的 RGB 色彩模式,什么是像素啊?
2.1 图像的 RGB 色彩模式
我们知道红色,绿色,蓝色是最基本的组成颜色,那么,顾名思义,RGB就是分别代表着三种颜色。RGB 三个颜色通道的变化和叠加得到各种颜色,其中
- R 红色,取值范围,0-255
- G 绿色,取值范围,0-255
- B 蓝色,取值范围,0-255
比如,我们常见的黄色就是由红色和绿色叠加而来。
红色的 RGB 表示(255,0,0) 绿色的 RGB 表示(0,255,0)
蓝色的 RGB 表示(0,0,255)黄色的 RGB 表示(255,255,0)
2.2 像素阵列
接下来,我们说说什么是像素,我们知道一个点就是像素,那么图片就可以像素的集合。
数字图像可以看成一个整数阵列,阵列中的元素称为像素(Pixel),见下图的数字阵列
每个点代表 1 个像素(Pixel),一个点包含 RGB 三种颜色。也就是 1 个像素包含 3 个字节的 信息:(R,G,B)。假如这个像素是红色,则信息是:(255,0,0)。那么,理论上我们只要 操作每个点上的这三个数字,就能实现任何的图形。一幅图像上的所有像素点的信息就完全 可以采用矩阵来表示,通过矩阵的运算实现更加复杂的操作。
三、Image 模块
Image模块是Pillow库的核心部分。它是用来存储所有类型的图像的主类,它还包含大量的函数方法,用于以各种方式处理图像。Image模块具有很多的功能,比如说
-
图像操作(旋转、转置等)
-
图像合成(混合等)
3.1 打开和新建
在 Pillow 库中,通过使用 Image 模块,可以从文件中加载图像,或者处理其他图像, 或者从 scratch 中创建图像。在对图像进行处理时,首先需要打开要处理的图片。在 Image 模块中使用函数 open()打开一副图片,执行后返回 Image 类的实例。当文件不存在时,会引 发 IOError 错误。使用函数 open()语法格式如下所示。
open(fp,mode)
- (1) fp:指打开文件的路径。
- (2) mode:可选参数,表示打开文件的方式,通常使用默认值 r。
在 Image 模块中,可以使用函数 new()新建图像。具体语法格式如下所示:
new(mode,size,color=0)
- (1) mode:图片模式,具体取值如下表
- (2) size:表示图片尺寸,是使用宽和高两个元素构成的元组
- (3) color:默认颜色(黑色)
mode(模式) | bands(通道) | 说明 |
"1" | 1 | 数字 1,表示黑白二值图像,每个像素用 0 或者 1 共 1 位二进制代 码表示 |
“L” | 1 | 灰度图,每个像素用 8 位二进制代码表示 |
"P" | 1 | 索引图,每个像素用 8 位二进制代码表示 |
【示例】使用 Image 打开打开一副图片
from PIL import Image
img=Image.open('text.png')
print('图片的格式:',img.format)
print('图片的大小:',img.size)
print('图片的高度:',img.height,'图片的宽度:',img.width)
print('获取(100,100)处像素值:',img.getpixel((100,100)))
运行结果如下:
3.2 混合
-
(1) 透明度混合处理
在 Pillow 库的 Image 模块中,可以使用函数 blend()实现透明度混合处理。具体语法 格式如下所示:
blend(im1,im2,alpha)
其中 im1、im2 指参与混合的图片 1 和图片 2,alpha 指混合透明度,取值是 0-1。 通过使用函数 blend(),可以将 im1 和 im2 这两幅图片(尺寸相同)以一定的透明度 进行混合。具体混合过程如下:
(im1*(1-alpha)+im2*alpha)
当混合透明度为 0 时,显示 im1 原图。当混合透明度 alpha 取值为 1 时,显示 im2 原图片。
【示例】透明度混合图片
from PIL import Image
img1=Image.open('1pqyq3.jpg').convert(mode='RGB')
img2=Image.new('RGB',img1.size,'red')
# img2.show()
Image.blend(img1,img2,alpha=0.5).show()
运行效果如下:
-
(2) 遮罩混合处理
在 Pillow 库中 Image 模块中,可以使用函数 composite()实现遮罩混合处理。具体语 法格式如下所示:
composite(im1,im2,mask)
其中 im1 和 im2 表示混合处理的图片 1 和图片 2.mask 也是一个图像,mode 可以为 “1”, “L”, or “RGBA”,并且大小要和 im1、im2 一样。 函数 composite()的功能是使用 mask 来混合图片 im1 和 im2,并且要求 mask、im1 和 im2 三幅图片的尺寸相同。下面的实例代码演示了使用 Image 模块实现图片遮罩混合处理的过程。
【示例】遮罩混合图片
from PIL import Image
img1=Image.open('1pp5o1.jpg')
img2=Image.open('1pp6e1.jpg')
img2=img2.resize(img1.size)
r,g,b=img2.split()
Image.composite(img2,img1,b).show()
运行效果如下:
本次使用的图片为:
执行之后的效果如下:
我们可以惊喜的发现到两张图片混合到了一起,是不是很神奇,这个就是我们开头说的遮盖混合,感兴趣的快去试试吧。
四、 总结
通过本文的学习,我们简单操作了透明度混合以及遮盖混合,下一章,我们会继续介绍pillow的操作。我们可以通过使用 Pillow 库, 可以方便地使用 Python 程序对图片进行处理,例如常见的尺寸、格式、色彩、旋转等处理。
Python图像处理库Pillow入门
http://python.jobbole.com/84956/
Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。
1)使用 Image 类
PIL最重要的类是 Image class, 你可以通过多种方法创建这个类的实例;你可以从文件加载图像,或者处理其他图像, 或者从 scratch 创建。
要从文件加载图像,可以使用open( )函数,在Image模块中:
1
2
|
>>> from PIL import Image
>>> im = Image.open("E:/photoshop/1.jpg")
|
加载成功后,将返回一个Image对象,可以通过使用示例属性查看文件内容:
1
2
3
|
>>> print(im.format, im.size, im.mode)
(‘JPEG‘, (600, 351), ‘RGB‘)
>>>
|
format 这个属性标识了图像来源。如果图像不是从文件读取它的值就是None。size属性是一个二元tuple,包含width和height(宽度和高度,单位都是px)。 mode 属性定义了图像bands的数量和名称,以及像素类型和深度。常见的modes 有 “L” (luminance) 表示灰度图像, “RGB” 表示真彩色图像, and “CMYK” 表示出版图像。
如果文件打开错误,返回 IOError 错误。
只要你有了 Image 类的实例,你就可以通过类的方法处理图像。比如,下列方法可以显示图像:
1
|
im.show()
|
2)读写图像
PIL 模块支持大量图片格式。使用在 Image 模块的 open()
函数从磁盘读取文件。你不需要知道文件格式就能打开它,这个库能够根据文件内容自动确定文件格式。要保存文件,使用 Image 类的 save()
方法。保存文件的时候文件名变得重要了。除非你指定格式,否则这个库将会以文件名的扩展名作为格式保存。
加载文件,并转化为png格式:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
"Python Image Library Test"
from PIL import Image
import os
import sys
for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +".png"
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print("Cannot convert", infile)
|
save() 方法的第二个参数可以指定文件格式。
3)创建缩略图
缩略图是网络开发或图像软件预览常用的一种基本技术,使用Python的Pillow图像库可以很方便的建立缩略图,如下:
1
2
3
4
5
6
7
|
# create thumbnail
size = (128,128)
for infile in glob.glob("E:/photoshop/*.jpg"):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+".thumbnail","JPEG")
|
上段代码对photoshop下的jpg图像文件全部创建缩略图,并保存,glob模块是一种智能化的文件名匹配技术,在批图像处理中经常会用到。
注意:Pillow库不会直接解码或者加载图像栅格数据。当你打开一个文件,只会读取文件头信息用来确定格式,颜色模式,大小等等,文件的剩余部分不会主动处理。这意味着打开一个图像文件的操作十分快速,跟图片大小和压缩方式无关。
4)图像的剪切、粘贴与合并操作
Image 类包含的方法允许你操作图像部分选区,PIL.Image.Image.crop 方法获取图像的一个子矩形选区,如:
1
2
3
4
|
# crop, paste and merge
im = Image.open("E:/photoshop/lena.jpg")
box = (100,100,300,300)
region = im.crop(box)
|
矩形选区有一个4元元组定义,分别表示左、上、右、下的坐标。这个库以左上角为坐标原点,单位是px,所以上诉代码复制了一个 200×200 pixels 的矩形选区。这个选区现在可以被处理并且粘贴到原图。
1
2
|
region = region.transpose(Image.ROTATE_180)
im.paste(region, box)
|
当你粘贴矩形选区的时候必须保证尺寸一致。此外,矩形选区不能在图像外。然而你不必保证矩形选区和原图的颜色模式一致,因为矩形选区会被自动转换颜色。
5)分离和合并颜色通道
对于多通道图像,有时候在处理时希望能够分别对每个通道处理,处理完成后重新合成多通道,在Pillow中,很简单,如下:
1
2
|
r,g,b = im.split()
im = Image.merge("RGB", (r,g,b))
|
对于split( )函数,如果是单通道的,则返回其本身,否则,返回各个通道。
6)几何变换
对图像进行几何变换是一种基本处理,在Pillow中包括resize( )和rotate( ),如用法如下:
1
2
|
out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise
|
其中,resize( )函数的参数是一个新图像大小的元祖,而rotate( )则需要输入顺时针的旋转角度。在Pillow中,对于一些常见的旋转作了专门的定义:
1
2
3
4
5
|
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
|
7)颜色空间变换
在处理图像时,根据需要进行颜色空间的转换,如将彩色转换为灰度:
1
2
|
cmyk = im.convert("CMYK")
gray = im.convert("L")
|
8)图像滤波
图像滤波在ImageFilter 模块中,在该模块中,预先定义了很多增强滤波器,可以通过filter( )函数使用,预定义滤波器包括:
BLUR、CONTOUR、DETAIL、EDGE_ENHANCE、EDGE_ENHANCE_MORE、EMBOSS、FIND_EDGES、SMOOTH、SMOOTH_MORE、SHARPEN。其中BLUR就是均值滤波,CONTOUR找轮廓,FIND_EDGES边缘检测,使用该模块时,需先导入,使用方法如下:
1
2
3
4
5
6
7
8
9
10
|
from PIL import ImageFilter
imgF = Image.open("E:/photoshop/lena.jpg")
outF = imgF.filter(ImageFilter.DETAIL)
conF = imgF.filter(ImageFilter.CONTOUR)
edgeF = imgF.filter(ImageFilter.FIND_EDGES)
imgF.show()
outF.show()
conF.show()
edgeF.show()
|
除此以外,ImageFilter模块还包括一些扩展性强的滤波器:
class PIL.ImageFilter.GaussianBlur(radius=2)
- Gaussian blur filter.
参数: radius – Blur radius. class PIL.ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3)
- Unsharp mask filter.
See Wikipedia’s entry on digital unsharp masking for an explanation of the parameters.
- class PIL.ImageFilter.Kernel(size, kernel, scale=None, offset=0)
- Create a convolution kernel. The current version only supports 3×3 and 5×5 integer and floating point kernels.
In the current version, kernels can only be applied to “L” and “RGB” images.
参数: - size – Kernel size, given as (width, height). In the current version, this must be (3,3) or (5,5).
- kernel – A sequence containing kernel weights.
- scale – Scale factor. If given, the result for each pixel is divided by this value. the default is the sum of the kernel weights.
- offset – Offset. If given, this value is added to the result, after it has been divided by the scale factor.
- class PIL.ImageFilter.RankFilter(size, rank)
- Create a rank filter. The rank filter sorts all pixels in a window of the given size, and returns therank‘th value.
参数: - size – The kernel size, in pixels.
- rank – What pixel value to pick. Use 0 for a min filter, size * size / 2 for a median filter, size * size - 1 for a max filter, etc.
- class PIL.ImageFilter.MedianFilter(size=3)
- Create a median filter. Picks the median pixel value in a window with the given size.
参数: size – The kernel size, in pixels.
- class PIL.ImageFilter.MinFilter(size=3)
- Create a min filter. Picks the lowest pixel value in a window with the given size.
参数: size – The kernel size, in pixels.
- class PIL.ImageFilter.MaxFilter(size=3)
- Create a max filter. Picks the largest pixel value in a window with the given size.
参数: size – The kernel size, in pixels.
- class PIL.ImageFilter.ModeFilter(size=3)
- Create a mode filter. Picks the most frequent pixel value in a box
with the given size. Pixel values that occur only once or twice are
ignored; if no pixel value occurs more than twice, the original pixel
value is preserved.
参数: size – The kernel size, in pixels. 更多详细内容可以参考:PIL/ImageFilter
9)图像增强
图像增强也是图像预处理中的一个基本技术,Pillow中的图像增强函数主要在ImageEnhance模块下,通过该模块可以调节图像的颜色、对比度和饱和度和锐化等:
1
2
3
4
5
|
from PIL import ImageEnhance
imgE = Image.open("E:/photoshop/lena.jpg")
imgEH = ImageEnhance.Contrast(imgE)
imgEH.enhance(1.3).show("30% more contrast")
|
图像增强:
- class PIL.ImageEnhance.Color(image)
- Adjust image color balance.
This class can be used to adjust the colour balance of an image, in a manner similar to the controls on a colour TV set. An enhancement factor of 0.0 gives a black and white image. A factor of 1.0 gives the original image.
- class PIL.ImageEnhance.Contrast(image)
- Adjust image contrast.
This class can be used to control the contrast of an image, similar to the contrast control on a TV set. An enhancement factor of 0.0 gives a solid grey image. A factor of 1.0 gives the original image.
- class PIL.ImageEnhance.Brightness(image)
- Adjust image brightness.
This class can be used to control the brighntess of an image. An enhancement factor of 0.0 gives a black image. A factor of 1.0 gives the original image.
- class PIL.ImageEnhance.Sharpness(image)
- Adjust image sharpness.
This class can be used to adjust the sharpness of an image. An enhancement factor of 0.0 gives a blurred image, a factor of 1.0 gives the original image, and a factor of 2.0 gives a sharpened image.
图像增强的详细内容可以参考:PIL/ImageEnhance
除了以上介绍的内容外,Pillow还有很多强大的功能:
PIL.Image.alpha_composite(im1, im2)
PIL.Image.blend(im1, im2, alpha)
PIL.Image.composite(image1, image2, mask)
PIL.Image.eval(image, *args)
PIL.Image.fromarray(obj, mode=None)
PIL.Image.frombuffer(mode, size, data, decoder_name=’raw’, *args)
想了解更多,请参考:Image Module和 Pillow Reference
以上是关于Pillow库进行图像文件处理(配图详解)的主要内容,如果未能解决你的问题,请参考以下文章